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Abstract

This study investigates the impact of long-term exposure to fine particulate matters (PM2.5)
on multimorbidity, functional disability, and quality of life in China. We find that a 10 µg/m3

increase in PM2.5 level increases multimorbidity by 5.2 percentage points (95% CI: 1.9-8.5), func-
tional disability by 3.6 percentage points (0.3-6.9), and reduces quality of life by 21.4 years (4.4-
38.4) per one thousand population per year. These adverse effects are more pronounced among
populations with lower income and education levels. Our analysis leverages quasi-experimental
variation in PM2.5 generated by China’s winter heating policy, which provides coal-fueled heat-
ing to cities north of the Qinling-Huaihe line but not to those to the south. Our findings are
derived from a regression discontinuity design based on distance from the Qinling-Huaihe line
and are robust to various estimation specifications and adjustments for covariates. Our results
highlight the significant health risks of prolonged air pollution exposure on multimorbidity and
population quality of life. Our estimates suggest that China’s Clean Air Plan’s reduction in
national PM2.5 levels from 2013-2020 would save 11.3 million life-years per year.
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Significance Statement.
The study investigates the causal impact of prolonged exposure to fine particulate matter

(PM2.5) on the occurrence of multimorbidity, defined as the co-occurrence of two or more chronic
conditions, and its associated loss in quality of life. Leveraging quasi-experimental variations in
PM2.5 levels generated by a historical, location-based policy in China, the research reveals that a
10-µg/m3 increase in 30-year average PM2.5 level heightens the prevalence of multimorbidity by
5.2 percentage points and reduces years lost to disability (YLD) by 21.4 years per one thousand
population per year. Our results imply that pollution control achieved since China’s Clean Air
Plan in 2013 has yielded savings of 11.3 million healthy years per year between 2013 and 2020.
Our findings highlight the importance of air quality improvement in mitigating multimorbidity and
improving overall quality of life and inform public health policies to address the growing challenges
of chronic conditions and aging populations globally.
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1 Introduction

Chronic conditions are the leading cause of morbidity and mortality globally (Beagle-
hole et al., 2011). The World Health Organization (WHO) reports that chronic conditions
kill 41 million people per year and account for 74% of global deaths. In addition, non-fatal
consequences of chronic conditions such as associated disabilities and cognitive-behavioral
disorders contribute to as much to the disease burden and loss in quality of life as prema-
ture deaths (Zhou et al., 2019).

Multimorbidity, the co-occurrence of two or more chronic conditions, is the most deadly
and debilitating form of chronic conditions. It has become increasingly prevalent in recent
decades, imposing a growing burden on individuals and healthcare systems worldwide
(Chowdhury et al., 2023; Wallace et al., 2015). More than one-third of adults worldwide
live with multimorbidity, this number rises to more than half among individuals aged
60 and above (Chowdhury et al., 2023). Multimorbidity significantly elevates the risk
of functional decline, disabilities, and impaired physical and mental health, resulting in
a substantial reduction in quality of life (Marengoni et al., 2011; Tran et al., 2022) and
accounting for a disproportionate share of medical spending (Sum et al., 2018). Despite
these significant consequences, well-established causal evidence regarding causes and risk
factors of multimorbidity remains limited.

We investigate the effects of long-term exposure to air pollution on multimorbidity. We
focus on particulate matters with a diameter less than 2.5 microns (PM2.5) as the primary
air pollutant for two reasons: its health damages and global scale. PM2.5 is known to
pose the greatest health risks among all ambient pollutants (Peeples, 2020). Short-term
exposure to PM2.5 can result in acute cardiovascular and respiratory events and cognitive-
behavioral disorders (Ravishankara et al., 2020; Lucas et al., 2006). Even exposure of a
few hours can raise blood pressure and trigger brain inflammation (Block et al., 2012).
Prolonged exposure to PM2.5 can cause significant health damages and is expected to
lead to a host of adverse outcomes such as multimorbidity. Moreover, the threat of PM2.5
is global (Pai et al., 2022; Gakidou et al., 2017; Hammer et al., 2020). According to
World Health organization (WHO), 90% of the global population were exposed to annual
PM2.5 levels exceeding the recommended limit of 5 µg/m3, with 75% exposed to at least
double the limit. Furthermore, the current global PM2.5 levels are projected to persist
for decades (Pai et al., 2022). Considering the rising prevalence of multimorbidity and
the global threat of sustained PM2.5 exposure, a critical assessment on the causal effect
of sustained PM2.5 exposure on multimorbidity is of tremendous scientific and policy
relevance.
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As chronic conditions develop over a prolonged period of time, it is essential to inves-
tigate the cumulative impact of long-term exposure to air pollution, rather than focusing
solely on short-term exposure. Empirical assessment of the causal impact of sustained
air pollution exposure on population health faces two critical challenges. First, reliable
measurement of long-term air pollution levels is often unavailable. There exist a few excep-
tions (Dockery et al., 1993; Pope et al., 2002, 2009; Yazdi et al., 2021), yet they primarily
focus on relatively low levels of PM2.5 in the US. Second, existing studies mostly rely
on observational variations in PM2.5 exposure, lacking causal inference. Two recent pio-
neering works by Chen et al. (2013) and Ebenstein et al. (2017) offer quasi-experimental
evidence by exploiting a persistent change in air pollution levels in China caused by a
decades-long winter heating policy. Both studies reveal a substantial increase in death
rate and reduction in life expectancy in cities with sustained higher air pollution levels.
Nonetheless, the impact of sustained pollution exposure on chronic morbidity and quality
of life remains unexplored. Considering that morbidity-induced disease burden of chronic
conditions is as important as premature deaths (Zhou et al., 2019), we prioritize investi-
gating morbidity, specifically multimorbidity, as a critical yet understudied aspect of the
link between environmental factors and population health.

We overcome aforementioned two challenges. First, we obtain long-term PM2.5 levels
in China from the recently constructed historical PM2.5 series spanning from 1960 to 2020,
provided by Zhong et al. (2022). This dataset combines satellite visibility data, ground-
based measurements, emissions, and statistical models, providing high-quality measure-
ments of historical PM2.5 levels at a fine geographic resolution and over a long time period.
Second, we leverage the decades-old, north-only winter heating policy in China for causal
inference (Figure 1, Panel A). China’s winter heating policy was implemented since early
1980s. The policy was implemented only in the north of China, with a policy border
roughly defined by the Qinglin-Huaihe line (the line for short), a major mountain ridge
line commonly adopted by geographers to distinguish between Northern and Southern
China. This north-only winter heating policy has led to a larger number of coal-powered
heating infrastructure being constructed in the north of the line while no equivalent sys-
tem existed in the south (Almond et al., 2009), resulting in a markedly sharp increase in
PM2.5 levels in the north relative to the south (Figure 1, Panel B). This offers a quasi-
experimental setting to identify the causal impact of sustained PM exposure on population
health. Our empirical setting and methodology is motivated by the pioneering work of
Chen et al. (2013) and Ebenstein et al. (2017). We discuss details of the institutional
background of China’s winter heating policy in Appendix Section A.

We leverage this geographic discontinuity in PM2.5 concentration and adopt the regres-
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sion discontinuity design (RD) in statistical analysis. Our analysis utilizes data from the
nationally representative China Health and Retirement Longitudinal Survey (CHARLS).
We primarily examine the population aged 45 to 60 to mitigate survival bias resulting from
the impact of sustained pollution exposure on premature mortality. CHARLS provides
high-quality information on chronic diseases and health behaviors, enabling us to exam-
ine the impact of sustained PM2.5 exposure on the prevalence of various chronic diseases
and multimorbidity and investigate individual’s behavioral responses to such sustained
environmental adversity. Statistical analyses were conducted using STATA 16.0 software
(Stata Corp LP, College Station, TX, USA).

We find that China’s north-only winter heating policy since the early 1980s created
a significant north-south gap in average PM2.5 concentrations. The average gap was
estimated to be 26.8 µg/m3 (95% CI: 15.7-37.8) for the period of 1980-2010. Notably, this
north-south gap in PM2.5 levels emerged in the early 1980s, persisted for three decades
from 1980 to 2010, and started to decline only after the 2013 anti-pollution campaign.
The north-south gap was primarily observed during the winter heating season (November-
March) and was absent during the non-heating season (April-September), confirming the
central role of the winter heating policy in driving the long-term north-south gap in air
pollution exposure. Other than the gap in sustained PM exposure, our analysis reveals no
north-south gap in water pollution, nor statistically significant differences in demographic
or socioeconomic characteristics.

The sustained exposure to a higher level of PM2.5 resulted in a greater prevalence
of multimorbidity in the north. Among a nationally representative sample of individuals
aged 45 to 60, the north-south gap in the prevalence rate of having two or more chronic
conditions was estimated at 9.6 pp (95% CI: 3.5-15.7), and for at least three chronic condi-
tions, it was 5.4 pp (95% CI: 0.3-10.5). Per disease, the north-south gap in multimorbidity
is mainly driven by significant gaps in the prevalence of common chronic conditions such
as hypertension, diabetes, asthma, and COPD. Such co-occurrence of multiple conditions
significantly increased the difficulty in performing daily activities. The Katz index and
Barthel index, both of which measure functional disability and individual’s ability of in-
dependent living (Hartigan, 2007), were 13.3 pp (95% CI: 6.4-20.2) and 7.9 pp (95% CI:
5.2-10.6) lower in the north.

We then estimate the effect of sustained PM2.5 exposure on an measure of overall dis-
ease burden—Years Lived with Disability (YLD), which estimates the number of healthy
years lost due to living with adverse health conditions. YLD quantifies the non-fatal con-
sequences of morbidity and complements measures such as Years of Life Lost (YLL) that
primarily focus on mortality (Vos et al., 2016; Naghavi et al., 2017). We find that sus-
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tained PM2.5 exposure increased the population YLD by 73.664 (95% CI: 40.377-106.951)
years per one thousand population per year. This estimate quantifies and highlights the
substantial adverse impact of sustained PM2.5 exposure on multimorbidity and quality of
life.

Combining the estimated north-south gaps in sustained PM2.5 exposure and disease
burden, we find that a ten-unit (µg/m3) increase in long-term PM2.5 level is associated
with a 5.2 pp (95% CI: 1.9-8.5) increase in the prevalence of having two or more chronic
conditions, and a 1.7 pp (95% CI: -0.3-3.7) increase in the prevalence of having three or
more conditions. Furthermore, it leads to a decrease of 3.6 pp (95% CI: 0.3-6.9) in the
Katz index and 1.5 pp (95% CI: -0.3-3.3) in the Barthel index. Overall, a one-unit increase
in long-term PM2.5 level results in a YLD increase of 21.393 (95% CI: 4.392-38.394) years
per one thousand population per year.

Our analysis also uncovers significant heterogeneity in the health impacts of long-term
PM2.5 exposure among different population groups. The more disadvantaged groups ex-
perienced more pronounced north-south gaps in multimorbidity, disabilities, and overall
disease burden. Specifically, those with lower education or income levels bore a dispro-
portionately larger burden of disease due to sustained PM exposure. Different levels of
pollution avoidance behaviors contribute to the heterogeneous impacts. On average, we
observed a significantly higher frequency of physical exercise and lower rates of smoking
and alcohol consumption in the north, indicating that individuals adjusted their lifestyles
and consumption habits to mitigate the adverse effects of pollution exposure. However,
these beneficial adjustments were more prevalent among the more educated and higher-
income group, while they were almost nonexistent among the less educated and lower-
income group. This disparity helps explain why the latter group experienced a higher
burden of chronic diseases due to sustained PM2.5 exposure.

Lastly, we quantify the welfare gains of the nationwide air pollution reduction since
2013. The series of stringent environmental regulations implemented since China’s Clean
Air Plan in 2013 resulted in a total reduction of the national average PM2.5 level by 20.3
µg/m3 from 2013 to 2020. Based on our estimates, this would lead to a 10.5 pp decrease in
the average prevalence of multimorbidity and save 11.3 million healthy years per year. This
highlights significant welfare gains of pollution control from lowering the disease burden
of non-fatal chronic conditions and multimorbidity, which supplement previous estimates
based on mortality and hold important policy implications for pollution control programs
in developing countries such as India and Indonesia. These findings have implications
beyond China and can guide policy decisions and interventions in other countries facing
similar challenges related to chronic diseases and air pollution. The research contributes
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to a more comprehensive understanding of the interactions between environmental factors
and health outcomes, fostering evidence-based approaches to address the global health
burden posed by chronic conditions.

The rest of this article is organized as follows. Data describes the data sources and
variables. Econometric Model outlines empirical strategies. Empirical Results represents
the main findings. Conclusion concludes.

2 Data

Analytical Sample Our main data source is the China Health and Retirement Longi-
tudinal Study (CHARLS), a nationally representative longitudinal survey of Chinese in-
dividuals aged 45 and above. CHARLS provides comprehensive demographic and socioe-
conomic information along with reliable physician-diagnosed disease records. CHARLS
conducted the baseline survey in 2011, followed by biennial surveys. We focus on the
CHARLS 2011 baseline survey. We do so because the annual level of PM2.5 remained
stable before the 2010s, offering a stable window to analyze the impact of sustained PM
exposure. PM2.5 levels sharply declined after the 2013 anti-pollution campaign. Appendix
Figure A1 illustrates this pattern. We therefore analyze the impact of the stable long-term
PM2.5 levels from 1980-2010 on population health in 2011 and adopt the estimates to infer
the welfare gains resulting from the sharp post-2013 reduction in PM2.5 levels.

We restrict to the sample whose residential place is the same as birthplace. This is
to lessen the potential selection due to potential compensatory migration in response to
pollution exposure. In addition, Ebenstein et al. (2017) has provided robust evidence
based on 2005 census that migration was limited during this time period in China and
there was no notable difference in migration rates between the north and south of the
Qinling-Huaihe line. Therefore, pollution concentrations at an individual’s birthplace are
a reasonable measure of their lifetime exposure to pollution.

The baseline sample consists of 17,708 respondents from 125 prefecture-level cities
in 28 provinces. We aggregate individual-level data to the city level and calculate the
population-weighted average prevalence rate of chronic conditions and multimorbidity
using the CFPS sampling weights. We combine the long-term PM2.5 levels with the
baseline sample, along with relevant city-level demographic and socioeconomic variables
such as age structure, GDP per capita, and industrial structure obtained from various city
statistical yearbooks.
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Main Outcome Variables We analyze three categories of outcome variables: multi-
morbidity, functional disability, and YLD. To define the incidence of multimorbidity, we
obtain the prevalence for the nine most common chronic conditions in each CHARLS city,
including hypertension, dyslipidemia, diabetes, asthma, COPD, other chronic respiratory
diseases, cardiovascular diseases, liver diseases, and kidney diseases. Stroke and cancer is
not included in our analysis due to its extremely low self-reported incidence in our sam-
ple. Appendix Table B1 further describes each chronic condition and Appendix Section
B provides more details on variable construction.

Multimorbidity and disability We define two measures of multimorbidity: one indi-
cating the co-occurrence of two or more chronic conditions (out of aforementioned disease
categories), and the other indicating three or more chronic conditions. We also analyze
functional disability, which is commonly associated with multimorbidity (Marengoni et al.,
2011; Tran et al., 2022). We assess functional disability using the widely adopted Katz
index and Barthel index, which measure an individual’s difficulty in performing basic ac-
tivities of daily living (ADL) and tasks required for independent living (Hartigan, 2007).
We provide further details on definition and construction of ADL, Katz index, and Barthel
index in Appendix Table B2, Table B3, and Table B4, respectively.

Years lived with disability We quantify the overall disease burden and its impact on
quality of life using the WHO’s years lived with disability (YLD). YLD is a composite
measure that estimates the number of healthy years lost due to living with adverse health
conditions, providing a comprehensive assessment of non-fatal health burdens (Vos et al.,
2016; Naghavi et al., 2017). Originally developed to measure the global burden of dis-
ease and injury, YLD serves as an important metric for assessing the relative magnitude
of health losses from different causes. Additionally, it is valuable for cost-effectiveness
analyses of public health interventions, making it a suitable measure for our study on the
health impact of the long-standing winter heating policy and subsequent pollution control
efforts.

We compute YLD for each city population following the WHO guideline in four steps.
First, we obtain the prevalence rate of each chronic condition for a city’s population. Sec-
ond, we assign WHO’s disability weights to each condition, representing the relative mag-
nitude of losses of healthy life associated with the condition (WHO, 2020). These disability
weights are derived from surveys or expert consensus (Salomon et al., 2015). Appendix
Table B5 provides disability weights for chronic conditions reported in the CHARLS sur-
vey, ranging from 0 (perfect health) to 1 (equivalent to death). Third, we multiply the
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prevalence of each condition by its corresponding disability weight to calculate the years
lived with disability for each condition. Finally, we obtain the YLD for a population by
summing the years lived with disability across all chronic conditions. Additional details
on the construction of YLD are presented in Appendix Section B.7.

Long-term PM2.5 level We measure the long-term PM2.5 level in each city as the
average annual level of PM2.5 from 1980 to 2010. Our measure is based on a database
constructed by Zhong et al. (2022), which provides historical PM2.5 concentrations at a
0.25◦ × 0.25◦ grid every 6 hours. The database integrates satellite images, meteorological
data, pollution emissions, and elevation using a Light Gradient Boosting Machine (Light-
GBM) model; and it is the first database of PM2.5 to offer such a long time horizon, high
temporal resolution, and fine geographic coverage in China. We validate the accuracy of
the data against ground-monitor-based records in Appendix Figure A1.

Meteorological conditions and regional covariates City-level meteorological vari-
ables, including temperature, precipitation, relative humidity, wind speed, and sunshine
duration, are sourced from the Chinese daily surface meteorological dataset (V3.0) pro-
vided by the National Meteorological Science Data Center. City-level socioeconomic vari-
ables are obtained from China Urban Statistical Yearbook, including GDP per capita, pub-
lic investment in education and medical resources, population size, population growth rate
and share of non-farm population, the ratio of value-added from primary and secondary
industries, as well as annual measurements of wastewater discharge and soot emissions.

Health behaviors We gather health-related behavior measures from CHARLS, includ-
ing physical exercise frequency per week, years of smoking (from the initial age of smoking
to either the year of survey or the year of cessation), years of alcohol drinking (from the
initial age of drinking to either the year of survey or the year of cessation), and nightly
sleep duration. Demographic and socioeconomic variables such as education years and
family health expenditure are also collected from CHARLS. Furthermore, nutritional in-
takes variables (calories, carbohydrates, protein, and fat) are obtained from the China
Health and Nutrition Survey (CHNS). Additional information on variable definitions can
be found in Appendix Section B.

Descriptive statistics Table 1 provides descriptive statistics for the main outcome
variables, showing the average values separately for cities located north (Column 1) and
south (Column 2) of the Qinling-Huaihe line, with the corresponding mean differences
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shown in Column 3. The data reveal significant disparities in PM2.5 concentrations and
population health outcomes between the north and south regions. In the subsequent
statistical analyses, we aim to assess the extent to which the differences in health outcomes
can be causally attributed to the disparity in long-term air pollution exposure, while
controlling for other meteorological and socioeconomic differences. To achieve this, we
include a set of socioeconomic, meteorological, and demographic city characteristics as
controls in the regression analyses. Appendix Table B6 provides descriptive statistics for
these covariates.

3 Econometric Model

We employ a regression discontinuity design (RD) in our statistical analysis, to ad-
dresses concerns of unobserved confounding factors when estimating the effect of air pol-
lution on health outcomes. RD is widely adopted across various fields, including psychol-
ogy, education, biostatistics, environmental science, and economics (Imbens and Lemieux,
2008; Lee and Lemieux, 2010; Cook, 2008). Building on the approach used by Chen et al.
(2013) and Ebenstein et al. (2017), we leverage the public winter heating policy imple-
mented only in the north of the Qinglin-Huaihe line as a quasi-experimental setting to
establish causal inference. We investigate the north-south gap in long-term PM2.5 con-
centrations and in population health, and explore any potential north-south gap in pre-
determined demographic and socioeconomic characteristics that could potential correlate
with PM2.5 concentration and population health.

Our regression models are specified as follows:

PMi = α0 + α1Northi + α2f(Lati) + α3Northi × f(Lati) + Longi +Wiα4 + εi; (1)

Yi = β0 + β1Northi + β2f(Lati) + β3Northi × f(Lati) + Longi +Wiβ4 + ui. (2)

PMi refers to the average PM2.5 concentration from 1980 to 2010 in city i, while Yi

represents three categories of health outcomes for the population aged 45-60 in city i in
CHARLS 2011 wave: the prevalence rate of multimorbidity, the average Katz index and
Barthel index measuring functional disability, and the population YLD reflecting overall
disease burden. The function f(Lati) relates to the distance Lati, measured in units
of latitude to the Qinling-Huaihe line. The variable Northi indicates whether city i is
located north of the line. The variable Longi represents longitude-region fixed effects,
dividing the area along the Qinling-Huaihe line into three regions. This accounts for
the differences in local demographic and socioeconomic characteristics between different
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longitude regions. The vector Wi includes city-level demographic, socioeconomic, and
meteorological covariates (see the descriptive statistics of included covariates in Appendix
Table B6). All regressions are weighted by the city population and robust standard errors
are clustered at the city level.

Causal inference in this model relies on the (weak) assumption that unobserved factors
influencing PM2.5 and morbidity change smoothly with distance to the line (Lati). We
validate this assumption through a range of RD graphical analyses and statistical tests
(Imbens and Lemieux, 2008; Lee and Lemieux, 2010). Please refer to Appendix Section
C for details of these tests.

The coefficients of interest, α1 and β1, estimate the causal impact of the north-only
winter heating policy on long-term PM2.5 concentrations and chronic conditions, respec-
tively. To ensure consistent estimation, the choice of polynomial function f(·) and the
bandwidth (i.e., the distance range used in estimation) are crucial. Recent advancements
in the RD methodology emphasize the sensitivity of results to the polynomial order when
using parametric specifications (Gelman and Imbens, 2019). Therefore, we adopt a non-
parametric, local linear approach with a narrow bandwidth. The optimal bandwidth is
determined using a data-driven approach (Imbens and Kalyanaraman, 2012; Calonico
et al., 2014, 2020). We present estimation results for two kernel functions in the tables
below to assess the stability of results. Sensitivity checks based on quadratic functional
forms of f(·) are also conducted (Gelman and Imbens, 2019).

4 Empirical Results

4.1 Long-term PM2.5 concentration

We present a visual representation of the impact of the winter heating policy on long-
term PM2.5 concentration through a RD figure. Figure 2 illustrates the distribution of
PM2.5 concentrations in latitude bins relative to the Qinling-Huaihe line. Each circle rep-
resents the average PM2.5 concentration (1980-2010) in cities within a 0.5-degree latitude
bin. The figure demonstrates a distinct and abrupt rise increase in PM2.5 concentrations
at the northern border of the line.

Building on this empirical evidence, we conduct statistical estimation on the north-
south gap of PM2.5 and restrict to an optimal, roughly 3-latitude band of region along the
Qinling-Huaihe line. This optimal bandwidth is determined by a data-driven algorithm
(Imbens and Kalyanaraman, 2012; Calonico et al., 2014, 2020). Table 2 (A) reports the
estimated north-south gap in long-term PM2.5 level is 26.8 µg/m3 (95% CI: 15.7-37.8),
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which corresponds to 42.1% of the national average. This sizable gap in PM2.5 is consistent
with the documented PM10 gap of 41.7 µg/m3 as reported by Ebenstein et al. (2017),
considering that PM2.5 is a primary component of PM10 (accounting for approximately
70% of PM10 in our dataset).

We further examine the dynamic pattern of the north-south gap of PM2.5 concentra-
tions from 1960 to 2020. Figure 3 illustrates that the gap was small from 1960 to 1975,
increased sharply since the early 1980s, reached its peak and stabilized between 1985 and
2000. In the late 2000s, following the implementation of the nationwide anti-pollution
campaign, the gap began to decline. By 2015, the PM2.5 gap had returned to pre-1980
levels. It is also noteworthy that the north-south gap in PM2.5 predominantly manifests
during the winter heating season (November-March), and are much smaller during the
non-heating season (April-September). This observation highlights the pivotal role played
by the winter heating policy in exacerbating the north-south gap in PM2.5 concentrations.

4.2 Health Outcomes

Prevalence of multimorbidity and specific chronic diseases The sustained higher
level of PM2.5 from 1980 to 2010 is anticipated to contribute to a higher prevalence of
chronic conditions and increase the co-occurrence of multiple conditions (i.e., multimor-
bidity). Figure 4 (A) and (B) plots the city-level prevalence rates of multimorbidity in
latitude bins relative to the Qinling-Huaihe line. Notably, there is a sharp increase in the
average prevalence rate of multimorbidity at the northern border of the line.

Table 2 (B) shows the estimated north-south gap in multimorbidity obtained from RD
regressions. The findings indicate that individuals residing in the north of the line had a
significantly higher rate of multimorbidity, with an increase of 9.6 pp (95% CI: 3.5-15.7,
41.2% of the baseline rate in 2011 in the north) for the multimorbidity rate for two or more
chronic conditions, and 5.4 pp (95% CI: 0.3-10.5, 52.4% of the baseline rate in 2011 in the
north) for the multimorbidity rate for three or more chronic conditions. The RD regres-
sions based on different kernel specifications and corresponding optimal bandwidths yield
similar estimates. It is important to note that these estimates likely underestimate the
north-south gap in multimorbidity, considering that our analytical sample only includes
the middle-aged cohorts (age 45-60).

Appendix Table B7 presents estimates of the north-south gap in the prevalence of
specific chronic condition. The sustained exposure to PM2.5 has resulted in increased
prevalence rates for nine major chronic conditions. These findings highlight the rising oc-
currence of various chronic conditions, which contributes to the increase in multimorbidity
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prevalence.

Prevalence of functional disability Having established a causal link between long-
term PM2.5 exposure and an increased prevalence rate of multimorbidity, we now inves-
tigate whether prolonged pollution exposure further elevates the incidence of functional
disability—a well-known consequence of multimorbidity (Marengoni et al., 2011). Disabil-
ity not only undermines one’s ability to live independently but also significantly impairs
overall quality of life. Moreover, the physical and cognitive impairments resulting from
disability hinder the effective management of multiple conditions, exacerbating the sever-
ity of multimorbidity and perpetuating a detrimental cycle (Sousa et al., 2009; Sheridan
et al., 2019). We adopt two instrument-based measures, namely the Katz index and
Barthel index, to assess functional disability and limitations in activities of daily living
(ADL).

Figure 4 (C) and (D) clearly depict a pronounced decrease in the Katz index and
Barthel index, respectively, in the north of the Qinling-Huaihe line. Our regression anal-
ysis, as presented in Table 2 (C), reveals a statistically significant north-south gap in the
Katz index of 13.3 pp (95% CI: 6.4-20.2, 18.5% of the baseline rate in 2011 in the north),
and a north-south gap in the Barthel index of 7.9 pp (95% CI: 5.2-10.6, 8.9% of the base-
line rate in 2011 in the north). These findings consistently indicate a higher prevalence of
functional disabilities among individuals exposed to higher PM2.5 levels in the north.

Quality of life The increase in multimorbidity rate and functional disabilities both in-
dicate a significant decline in quality of life. We adopt the WHO’s Years Lived With
Disability (YLD) as a composite measure for the overall disease burden and loss in qual-
ity of life. YLD quantifies the impact of non-fatal health conditions on populations by
estimating the number of healthy years lost due to living with adverse health conditions
(Vos et al., 2016; Naghavi et al., 2017). Details on constructing the YLD in each city are
provided in Appendix Section B.7.

Figure 4 (E) depicts a marked increase in the YLD in the north of the Qinling–Huaihe
line, indicating a significant decline in quality of life attributed to sustained exposure to
elevated levels of PM2.5. The regression results, as presented in Table 2 (D), confirms
a statistically significant north-south gap in YLD by 73.7 years (95% CI: 40.4-107.0) for
every one thousand population per year, which accounts for 60.0% of the baseline rate in
2011 in the north. Overall, Figure 4 presents robust evidence of the adverse impacts of
sustained PM2.5 exposure on the burden of chronic diseases and the quality of life.
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Marginal effect of sustained PM2.5 exposure Table 3 reports on the estimates of
the marginal effect of additional 10 µg/m3 PM2.5 on multimorbidity, functional disabilities
and YLD from the instrumental variable (IV) estimation. The estimated marginal effect
can be understood as the estimated north-south gap in various health outcomes divided
by the estimated north-south gap in long-term PM2.5 concentrations. Panel A shows that
an 10 µg/m3 PM2.5 increase the prevalence of suffering two and three chronic conditions
by 5.2 pp (95% CI: 1.9-8.5) and 1.7 pp (95% CI: -0.3-3.7) respectively, which is significant
at the 5% level. Meanwhile, Panel B shows that an additional 10 µg/m3 PM2.5 lower
the degree of independence measured by Katz index and Barthel index by 3.6 pp (95%
CI: 0.3-6.9) and 1.5 pp (95% CI: -0.3-3.3) respectively. Finally, we find an additional 10
µg/m3 PM2.5 increase the YLD for every one thousand population per year by 21.4 (95%
CI: 4.4-38.4) years.

Different impacts across socioeconomic groups We proceed to examine the het-
erogeneity in the results across different socioeconomic groups. Table 4 reveals that indi-
viduals with lower education levels (illiterate or below primary school) and lower income
(below median income) experienced more significant adverse impacts when residing north
of the line. The north-south disparity in multimorbidity (≥2 conditions) was 13.2 pp
compared to 10.1 pp for the less educated and more educated groups, respectively. Sim-
ilarly, the north-south gap in the Katz index was 19.4 pp versus 11.9 pp, and the gap in
YLD was 122.050 years versus 48.174 years. When comparing the low-income group to
the high-income group, the estimated north-south gap in multimorbidity (≥2 conditions)
was 18.3 pp versus 7.3 pp, the gap in Katz index was 38.9 pp versus 12.8 pp, and the
gap in YLD was 101.045 years versus 46.169 years. Overall, our findings indicate that
more disadvantaged groups (less educated or lower income) bear a greater disease burden
due to prolonged exposure to air pollution. The observed discrepancy in disease burden
across socioeconomic groups may stem from variations in health knowledge, awareness of
air pollution, and differential adjustments in lifestyle behaviors as a response to pollution
exposure.

Given the intuitive understanding of disparities in knowledge and awareness, we delve
into exploring diverse behavioral adaptations to prolonged exposure to pollution. Our
investigation centers on key health behaviors including frequency of physical exercise,
smoking and drinking habits, and nutrition intakes. Previous research has underscored
the significant role of these behaviors in the onset and management of chronic diseases
(Liu et al., 2013; Paudel et al., 2019; Ng et al., 2020). Indeed, Figure 5 presents evidence
that residents in the north exhibit higher frequency of physical exercise, lower alcohol
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consumption, and fewer years of smoking in comparison to their southern peers (also
see Appendix Table B8). We do not observe notable north-south differences in nutrition
intakes (Appendix Figure A2 and Table B9). Overall, the lifestyle adaptations in exer-
cise, smoking and drinking contribute to mitigating the detrimental impacts of prolonged
exposure to PM2.5.

However, Table 5 reveals a substantial disparity in the adoption of these lifestyle
adjustments among different socioeconomic groups. Individuals with lower education lev-
els and lower income exhibit lower adaptations in these lifestyle behaviors, while those
with higher education and higher income demonstrate a more pronounced pattern of such
adaptations. These findings help explain why more disadvantaged groups bear a dis-
proportionate disease burden from prolonged exposure to PM2.5 (as evidenced in Table
4).

Robustness Lastly, we conduct a comprehensive series of diagnostic tests and robust-
ness checks to ensure the validity and reliability of our findings. First, we perform the
RD density test (McCrary, 2008; Cattaneo et al., 2020, 2021), which aims to detect any
potential discontinuity in the sample density distribution in an RD design. Appendix
Figure A3 demonstrates that there is no evidence of such a discontinuity in the sample
density. Second, we examined the appropriateness of selecting the Qinglin-Huaihe line
as the geographic reference line for the winter heating policy. To do this, we construct
various placebo RD reference lines by shifting the Qinglin-Huaihe line to the north or
south. Appendix Figure A4 shows a sizable and statistically significant north-south gap
in long-term PM2.5 concentrations only with respect to the real Qinling-Huaihe line, but
not the placebo lines. Third, we conduct balance tests in Appendix Figure A5, Figure A6,
and Appendix Table B10 and ensure that there are no noticeable north-south differences
in socioeconomic and meteorological factors. Lastly, we assess the sensitivity of our RD
estimates to several factors. These include: (1) alternative lengths of bandwidth in the
local linear RD design (Appendix Figure A7), (2) the adoption of the optimal bandwidth
determined by the coverage error rate (CER) optimal bandwidth algorithm instead of
MSE (Appendix Tables B11 and B12), (3) the use of a quadratic distance function rather
than local linear distance function (Appendix Tables B13 and B14), and (4) the implemen-
tation of a bias correction procedure on RD estimates with a robust variance estimator
(Appendix Tables B15 and B16). All of these analyses consistently support our baseline
findings and provide further validation for our RD specification.
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Social welfare Our back-of-the-envelope calculations demonstrate the significant wel-
fare gains achieved through China’s nationwide efforts in pollution control and environ-
mental protection since 2013. We find that each 10-unit reduction in long-term PM2.5 lev-
els corresponds to a 5.2 percentage point reduction in multimorbidity prevalence and a sav-
ing of 21.4 healthy years per one thousand population per year. Considering that China’s
Clean Air Plan has successfully reduced the average national PM2.5 level by 20.3 µg/m3

from 2013 to 2020, this translates into a reduction in multimorbidity by 10.5 percentage
points and a total saving of 11.3 million healthy years per year (=20.3/10*21.4*260/1000,
based on a national population aged 45 to 60 of 260 million in 2010).

To put these numbers into perspective, previous estimates by Gruber et al. (2023)
show that China’s implementation of the new rural medical scheme, the world’s largest
provision of public health insurance, would save about 1.01 million lives per year since its
national rollout. In comparison, the estimated saving in life years from the 2013 national
anti-pollution campaign is about an order of magnitude larger than the corresponding
saving in life years from the national provision of public health insurance. This highlights
the substantial overall welfare gains achieved through environmental protection in China.

5 Conclusion

Our study contributes to the literature by being one of the first to examine the causal
impact of prolonged exposure to air pollution on multimorbidity and quality of life. To
achieve this, we utilize a unique dataset of 30-year long panel series of PM2.5 concentra-
tions derived from a high-resolution remote sensing database. Leveraging the implemen-
tation of China’s winter heating policy as a natural experiment, we exploit the geographic
variation in PM2.5 levels to make causal inferences.

Our findings reveal a sharp increase in PM2.5 concentrations in the northern regions of
the Qinglin-Huaihe line following the implementation of the winter heating policy, and this
elevated pollution level persisted significantly higher than the southern regions over the
three-decade period from 1980 to 2010. This sustained higher level of PM2.5 exposure led
to a significantly higher rate of multimorbidity and disability, and a substantial reduction
in quality life. Furthermore, our research assesses potential heterogeneous effects across
different socioeconomic groups within the population and reveals that the disadvantaged
group of society, such as those less educated and with lower income, suffered a greater
burden of multimorbidity and disability. This finding sheds light on the distributional
consequences of long-term PM exposure, which can inform targeted and equitable public
health interventions.
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Overall, our study fills a crucial knowledge gap and underscores the long-term impli-
cations of air pollution on public health and quality of life. By utilizing robust empirical
methods and comprehensive data, we provide valuable insights into the far-reaching ef-
fects of air pollution on population health and the importance of addressing this pressing
environmental issue for the well-being of global populations.

In addition, our findings underscore the significant welfare gains from China’s Clean Air
Plan, which effectively reduced the average PM2.5 exposure for the entire population. Our
results suggest that the reduction in national average PM2.5 levels would have resulted
in savings of 11.3 million healthy life years per year for the population aged 45 to 60
alone, and the positive impact on health is expected to be even greater for older cohorts.
Moreover, the policy implications of our research extend beyond China. With over 75% of
the global population living in areas with PM2.5 concentrations exceeding the WHO’s safe
limit, there is a pressing need for effective environmental protection policies worldwide.
By reducing population exposure to PMs, such policies have the potential to significantly
decrease the prevalence of chronic conditions, multimorbidity, and associated functional
decline, ultimately leading to substantial improvements in the quality of life for billions of
people globally.

References
Almond, D., Y. Chen, M. Greenstone, and H. Li (2009). Winter heating or clean air? unintended impacts

of china’s huai river policy. American Economic Review 99(2), 184–90.

Beaglehole, R., R. Bonita, R. Horton, C. Adams, G. Alleyne, P. Asaria, V. Baugh, H. Bekedam, N. Billo,
S. Casswell, et al. (2011). Priority actions for the non-communicable disease crisis. The lancet 377(9775),
1438–1447.

Block, M. L., A. Elder, R. L. Auten, S. D. Bilbo, H. Chen, J.-C. Chen, D. A. Cory-Slechta, D. Costa,
D. Diaz-Sanchez, D. C. Dorman, et al. (2012). The outdoor air pollution and brain health workshop.
Neurotoxicology 33(5), 972–984.

Braga, A. L., A. Zanobetti, and J. Schwartz (2002). The effect of weather on respiratory and cardiovascular
deaths in 12 us cities. Environmental health perspectives 110(9), 859–863.

Bu, X., Z. Xie, J. Liu, L. Wei, X. Wang, M. Chen, and H. Ren (2021). Global pm2. 5-attributable health
burden from 1990 to 2017: Estimates from the global burden of disease study 2017. Environmental
Research 197, 111123.

Calonico, S., M. D. Cattaneo, and M. H. Farrell (2020). Optimal bandwidth choice for robust bias-corrected
inference in regression discontinuity designs. The Econometrics Journal 23(2), 192–210.

Calonico, S., M. D. Cattaneo, and R. Titiunik (2014). Robust data-driven inference in the regression-
discontinuity design. The Stata Journal 14(4), 909–946.

Cattaneo, M. D., M. Jansson, and X. Ma (2020). Simple local polynomial density estimators. Journal of
the American Statistical Association 115(531), 1449–1455.

15



Cattaneo, M. D., M. Jansson, and X. Ma (2021). Local regression distribution estimators. Journal of
econometrics.

Chen, Y., A. Ebenstein, M. Greenstone, and H. Li (2013). Evidence on the impact of sustained exposure
to air pollution on life expectancy from china’s huai river policy. Proceedings of the National Academy
of Sciences 110(32), 12936–12941.

Chowdhury, S. R., D. C. Das, T. C. Sunna, J. Beyene, and A. Hossain (2023). Global and regional
prevalence of multimorbidity in the adult population in community settings: a systematic review and
meta-analysis. EClinicalMedicine 57.

Cook, T. D. (2008). ”waiting for life to arrive”: a history of the regression-discontinuity design in psychol-
ogy, statistics and economics. Journal of Econometrics 142(2), 636–654.

Ćwirlej-Sozańska, A., A. Wiśniowska-Szurlej, A. Wilmowska-Pietruszyńska, and B. Sozański (2019). De-
terminants of adl and iadl disability in older adults in southeastern poland. BMC geriatrics 19(1),
1–13.

Ding, L., M. Fan, and P. Nie (2021). The long-term effect of air pollution on human cognition: Evidence
from china. Available at SSRN 3792594.

Dockery, D. W., C. A. Pope, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr, and F. E.
Speizer (1993). An association between air pollution and mortality in six us cities. New England journal
of medicine 329(24), 1753–1759.

Ebenstein, A., M. Fan, M. Greenstone, G. He, and M. Zhou (2017). New evidence on the impact of
sustained exposure to air pollution on life expectancy from china’s huai river policy. Proceedings of the
National Academy of Sciences 114(39), 10384–10389.

Fan, M., G. He, and M. Zhou (2020). The winter choke: Coal-fired heating, air pollution, and mortality
in china. Journal of Health Economics 71(C), S0167629619311257.

Gakidou, E., A. Afshin, A. A. Abajobir, K. H. Abate, C. Abbafati, K. M. Abbas, F. Abd-Allah, A. M.
Abdulle, S. F. Abera, V. Aboyans, et al. (2017). Global, regional, and national comparative risk
assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks,
1990–2016: a systematic analysis for the global burden of disease study 2016. The Lancet 390(10100),
1345–1422.

Gelman, A. and G. Imbens (2019). Why high-order polynomials should not be used in regression discon-
tinuity designs. Journal of Business & Economic Statistics 37(3), 447–456.

Goggins, W. B. and E. Y. Chan (2017). A study of the short-term associations between hospital admissions
and mortality from heart failure and meteorological variables in hong kong: Weather and heart failure
in hong kong. International journal of cardiology 228, 537–542.

Gruber, J., M. Lin, and J. Yi (2023). The largest insurance expansion in history: Saving one million lives
per year in china. Technical report, National Bureau of Economic Research.

Hammer, M. S., A. van Donkelaar, C. Li, A. Lyapustin, A. M. Sayer, N. C. Hsu, R. C. Levy, M. J. Garay,
O. V. Kalashnikova, R. A. Kahn, et al. (2020). Global estimates and long-term trends of fine particulate
matter concentrations (1998–2018). Environmental Science & Technology 54(13), 7879–7890.

Hartigan, I. (2007). A comparative review of the katz adl and the barthel index in assessing the activities
of daily living of older people. International journal of older people nursing 2(3), 204–212.

Imbens, G. and K. Kalyanaraman (2012). Optimal bandwidth choice for the regression discontinuity
estimator. The Review of economic studies 79(3), 933–959.

16



Imbens, G. W. and T. Lemieux (2008). Regression discontinuity designs: A guide to practice. Journal of
econometrics 142(2), 615–635.

Ito, K. and S. Zhang (2020). Willingness to pay for clean air: Evidence from air purifier markets in china.
Journal of Political Economy 128(5), 1627–1672.

Lee, D. S. and T. Lemieux (2010). Regression discontinuity designs in economics. Journal of economic
literature 48(2), 281–355.

Liu, J., B. M. Varghese, A. Hansen, M. A. Borg, Y. Zhang, T. Driscoll, G. Morgan, K. Dear, M. Gourley,
A. Capon, et al. (2021). Hot weather as a risk factor for kidney disease outcomes: A systematic review
and meta-analysis of epidemiological evidence. Science of The Total Environment 801, 149806.

Liu, Y., J. B. Croft, A. G. Wheaton, G. S. Perry, D. P. Chapman, T. W. Strine, L. R. McKnight-Eily, and
L. Presley-Cantrell (2013). Association between perceived insufficient sleep, frequent mental distress,
obesity and chronic diseases among us adults, 2009 behavioral risk factor surveillance system. BMC
public health 13(1), 1–8.

Lu, F., D. Xu, Y. Cheng, S. Dong, C. Guo, X. Jiang, and X. Zheng (2015). Systematic review and meta-
analysis of the adverse health effects of ambient pm2. 5 and pm10 pollution in the chinese population.
Environmental research 136, 196–204.

Lucas, S.-M., N. J. Rothwell, and R. M. Gibson (2006). The role of inflammation in cns injury and disease.
British journal of pharmacology 147(S1), S232–S240.

Marengoni, A., S. Angleman, R. Melis, F. Mangialasche, A. Karp, A. Garmen, B. Meinow, and
L. Fratiglioni (2011). Aging with multimorbidity: a systematic review of the literature. Ageing re-
search reviews 10(4), 430–439.

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density
test. Journal of econometrics 142(2), 698–714.

Muller, N. Z., R. Mendelsohn, and W. Nordhaus (2011). Environmental accounting for pollution in the
united states economy. American Economic Review 101(5), 1649–75.

Naghavi, M., A. A. Abajobir, C. Abbafati, K. M. Abbas, F. Abd-Allah, S. F. Abera, V. Aboyans,
O. Adetokunboh, A. Afshin, A. Agrawal, et al. (2017). Global, regional, and national age-sex spe-
cific mortality for 264 causes of death, 1980–2016: a systematic analysis for the global burden of disease
study 2016. The lancet 390(10100), 1151–1210.

Ng, R., R. Sutradhar, Z. Yao, W. P. Wodchis, and L. C. Rosella (2020). Smoking, drinking, diet and
physical activity—modifiable lifestyle risk factors and their associations with age to first chronic disease.
International Journal of Epidemiology 49(1), 113.

Noelker, L. S. and R. Browdie (2014). Sidney katz, md: A new paradigm for chronic illness and long-term
care. The Gerontologist 54(1), 13–20.

Pai, S. J., T. S. Carter, C. L. Heald, and J. H. Kroll (2022). Updated world health organization air quality
guidelines highlight the importance of non-anthropogenic pm2. 5. Environmental Science & Technology
Letters.

Paudel, S., A. J. Owen, E. Owusu-Addo, and B. J. Smith (2019). Physical activity participation and the
risk of chronic diseases among south asian adults: a systematic review and meta-analysis. Scientific
reports 9(1), 1–12.

Peeples, L. (2020). How air pollution threatens brain health. Proceedings of the National Academy of
Sciences 117(25), 13856–13860.

17



Pope, C. A., R. T. Burnett, M. J. Thun, E. E. Calle, D. Krewski, K. Ito, and G. D. Thurston (2002).
Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution.
Jama 287(9), 1132–1141.

Pope, C. A., M. Ezzati, and D. W. Dockery (2009). Fine-particulate air pollution and life expectancy in
the united states. New England Journal of Medicine 360(4), 376–386.

Ravishankara, A. R., L. M. David, J. R. Pierce, and C. Venkataraman (2020). Outdoor air pollution
in india is not only an urban problem. Proceedings of the National Academy of Sciences 117(46),
28640–28644.

Salomon, J. A., J. A. Haagsma, A. Davis, C. M. de Noordhout, S. Polinder, A. H. Havelaar, A. Cassini,
B. Devleesschauwer, M. Kretzschmar, N. Speybroeck, et al. (2015). Disability weights for the global
burden of disease 2013 study. The Lancet Global Health 3(11), e712–e723.

Schinasi, L. H., C. C. Kenyon, K. Moore, S. Melly, Y. Zhao, R. Hubbard, M. Maltenfort, A. D. Roux,
C. B. Forrest, and A. J. De Roos (2020). Heavy precipitation and asthma exacerbation risk among chil-
dren: a case-crossover study using electronic health records linked with geospatial data. Environmental
Research 188, 109714.

Sheridan, P., C. Mair, and A. Quiñones (2019). Associations between prevalent multimorbidity com-
binations and prospective disability and self-rated health among older adults in europe. BMC Geri-
atrics 19(1), 198.

Song, C., J. He, L. Wu, T. Jin, X. Chen, R. Li, P. Ren, L. Zhang, and H. Mao (2017). Health burden
attributable to ambient pm2. 5 in china. Environmental pollution 223, 575–586.

Sousa, R. M., C. P. Ferri, D. Acosta, E. Albanese, M. Guerra, Y. Huang, K. Jacob, A. Jotheeswaran,
J. J. L. Rodriguez, G. R. Pichardo, M. C. Rodriguez, A. Salas, A. L. Sosa, J. Williams, T. Zuniga, and
M. Prince (2009). Contribution of chronic diseases to disability in elderly people in countries with low
and middle incomes: A 10/66 dementia research group population-based survey. The Lancet 374(9704),
1821–30.

Sum, G., T. Hone, R. Atun, C. Millett, M. Suhrcke, A. Mahal, G. C.-H. Koh, and J. T. Lee (2018). Mul-
timorbidity and out-of-pocket expenditure on medicines: a systematic review. BMJ global health 3(1),
e000505.

Tas, Ü., A. P. Verhagen, S. M. Bierma-Zeinstra, E. Odding, and B. W. Koes (2007). Prognostic factors of
disability in older people: a systematic review. British Journal of General Practice 57(537), 319–323.

Tran, P. B., J. Kazibwe, G. F. Nikolaidis, I. Linnosmaa, M. Rijken, and J. van Olmen (2022). Costs of
multimorbidity: a systematic review and meta-analyses. BMC medicine 20(1), 234.

Vos, T., C. Allen, M. Arora, R. M. Barber, Z. A. Bhutta, A. Brown, A. Carter, D. C. Casey, F. J. Charlson,
A. Z. Chen, et al. (2016). Global, regional, and national incidence, prevalence, and years lived with
disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the global burden of disease
study 2015. The lancet 388(10053), 1545–1602.

Wallace, E., C. Salisbury, B. Guthrie, C. Lewis, T. Fahey, and S. M. Smith (2015). Managing patients
with multimorbidity in primary care. Bmj 350.

Weller, R. B. (2020). Beneficial effects of sunlight may account for the correlation between serum vitamin
d levels and cardiovascular health. JAMA cardiology 5(1), 109–109.

WHO, A. (2020). Who methods and data sources for global burden of disease estimates: 2000-2019.

18



Yazdi, M. D., Y. Wang, Q. Di, W. J. Requia, Y. Wei, L. Shi, M. B. Sabath, F. Dominici, B. Coull, J. S.
Evans, et al. (2021). Long-term effect of exposure to lower concentrations of air pollution on mortality
among us medicare participants and vulnerable subgroups: a doubly-robust approach. The Lancet
Planetary Health 5(10), e689–e697.

Yin, P., M. Brauer, A. J. Cohen, H. Wang, J. Li, R. T. Burnett, J. D. Stanaway, K. Causey, S. Larson,
W. Godwin, et al. (2020). The effect of air pollution on deaths, disease burden, and life expectancy
across china and its provinces, 1990–2017: an analysis for the global burden of disease study 2017. The
Lancet Planetary Health 4(9), e386–e398.

Zhong, J., X. Zhang, K. Gui, J. Liao, Y. Fei, L. Jiang, L. Guo, L. Liu, H. Che, Y. Wang, et al. (2022).
Reconstructing 6-hourly pm 2.5 datasets from 1960 to 2020 in china. Earth System Science Data 14(7),
3197–3211.

Zhou, M., H. Wang, X. Zeng, P. Yin, J. Zhu, W. Chen, X. Li, L. Wang, L. Wang, Y. Liu, et al. (2019).
Mortality, morbidity, and risk factors in china and its provinces, 1990–2017: a systematic analysis for
the global burden of disease study 2017. The Lancet 394(10204), 1145–1158.

19



6 Figures
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(A) Cities with public winter heating (B) Long-term PM2.5 concentration (1980-2010)

FIGURE 1
China’s Winter Heating Policy and Long-term PM2.5 Concentration

Notes: In panel (A), The red areas represent cities completely coverd by winter heating system, the blue areas refer to cities partly coverd by winter
heating system, and cities in the white zone do not have winter heating system. In panel (B), cities in yellower areas have higher levels of PM2.5
concentration, and white areas lack corresponding pollution data. The green line in the map represents the Qinling-Huaihe Line. The cities marked
with black dots are sampled in CHARLS.
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FIGURE 2
Average PM2.5 concentrations (1980-2010) in the north and south of the

Qinling-Huaihe line

Notes: This figure display the average PM2.5 concentrations from 1980 to 2010 in 0.5 latitude bins. The
sample encompasses 121 cities located within 16 latitudes to the Qinling-Huaihe line, which serves as
the reference line. Each circle represents a 0.5-degree latitude bin. We plot means in bins and include
estimated local polynomial fit lines (with a 95% confidence interval band) on each side of the reference
line. Data source for PM2.5 concentrations is Zhong et al. (2022).
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FIGURE 3
RD estimates of the north-south gap in PM2.5 from 1960 to 2015

Notes: The figure displays the dynamic pattern of the north-south gap of PM2.5 concentrations in 5-year
intervals from 1960 to 2015. Each circle represents the RD estimate of the north-south gap in PM2.5 over a
5-year interval, using the regression equation 1 in Section 3. Each regression adopts the mean square error
(MSE) optimal bandwidth (Imbens and Kalyanaraman, 2012; Calonico et al., 2014, 2020). Each vertical
line represents the 95% confidence interval of the corresponding RD estimate. The red lines represents
the estimates in winter heating season (November-March), while the green line for the non-heating season
(April-September). Data source for PM2.5 concentrations is Zhong et al. (2022).
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(A) Multimorbidity (≥ 2 conditions) (B) Multimorbidity (≥ 3 conditions) (C) Katz index

(D) Barthel index (E) Years lived with disability (YLD)

FIGURE 4
Average Health Outcomes in the North and South of the Qinling-Huaihe Line

Notes: This figure displays the average prevalence rates of multimorbidity (Panels A and B), the rates of functional disabilities (Panels C and D), and
the average years lived with disability (YLD) in 0.5-latitude bins. The analysis encompasses 121 cities located within 16 latitudes to the Qinling-Huaihe
line, which serves as the reference line. The figure presents bin means and includes local polynomial fit lines on both sides of the reference line. Data
source for all health measures is CHARLS 2011 baseline survey. See Section 2 and Appendix Section B for further details on variable definition and
constructions.
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(A) Physical exercises (B) Alcohol drinking (C) Smoking

FIGURE 5
Average Health Behaviors in the North and South of the Qinling-Huaihe Line

Notes: This figure displays the average frequency of physical exercises (hours per week) in Panel (A), the average years of drinking in Panel (B), and
the average years of smoking in Panel (C) in 0.5-latitude bins. The analysis encompasses 121 cities located within 16 latitudes to the Qinling-Huaihe
line, which serves as the reference line. The figure presents bin means and includes local polynomial fit lines on both sides of the reference line. Data
source for all health outcome measures is 2011 baseline survey. See Section 2 and Appendix Section B for further details on variable definition and
constructions.
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7 Tables

TABLE 1 Summary Statistics of Outcome Variables

Outcomes North South Raw Diff (1)-(2)

PM25 (µg/m3) 77.658 (25.561) 63.380 (17.906) 14.278 (3.979)

Multimorbidity (≥ 2 conditions) 0.233 (0.119) 0.159 (0.074) 0.074 (0.018)

Multimorbidity (≥ 3 conditions) 0.103 (0.068) 0.052 (0.041) 0.051 (0.010)

Katz index 0.719 (0.084) 0.695 (0.081) 0.025 (0.015)

Barthel index 0.886 (0.031) 0.887 (0.032) -0.002 (0.006)

YLD (per 103 people per year) 122.759 (53.025) 111.062 (38.561) 11.697 (8.366)

Observations 57 64 121
Notes: This table presents the average values of PM2.5 concentration, health outcomes of cities in the north and
south of the reference line. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-
Huaihe line, of which 57 are in the north and 64 are in the south. Data on long-term PM2.5 concentrations are
obtained from Zhong et al. (2022) and data on health outcomes are from CHARLS 2011 survey. Standard devia-
tions are reported in parentheses.
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TABLE 2 RD Estimated North-south Gap in PM2.5 Levels, Multimorbidity,
Disability, and YLD

Outcomes (1) (2)

Panel A: Long-term PM2.5 concentration (1980-2010)

PM25 (µg/m3) 26.770*** 26.701***
(5.625) (5.206)

Bandwidth (North) 2.140 2.407
Bandwidth (South) 2.526 2.508

Panel B: Multimorbidity

Multimorbidity ( ≥ 2 conditions) 0.096*** 0.096***
(0.031) (0.027)

Bandwidth (North) 2.561 3.327
Bandwidth (South) 3.283 3.214
Multimorbidity ( ≥ 3 conditions) 0.054** 0.045**

(0.026) (0.022)
Bandwidth (North) 2.646 4.138
Bandwidth (South) 3.150 2.976

Panel C: Disability

Katz index -0.133*** -0.131***
(0.035) (0.031)

Bandwidth (North) 4.128 4.916
Bandwidth (South) 2.307 2.249
Barthel index -0.079*** -0.080***

(0.014) (0.014)
Bandwidth (North) 4.178 4.490
Bandwidth (South) 2.406 2.316

Panel D: Quality of life

YLD (per 103 people per year) 73.664*** 73.400***
(16.983) (15.978)

Bandwidth (North) 2.082 2.266
Bandwidth (South) 2.784 2.772

Observations 121 121
Longitude-region FEs Yes Yes
Control Variables Yes Yes
Bandwidth selection MSE MSE
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in long-term PM2.5 concentrations and population health
outcomes. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line.
Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and data on health outcomes are
from CHARLS 2011 survey. The table reports RD estimated coefficients from Equations 1 and 2 based on local
linear distance function, epanechnikov kernel (Column 1) or triangular kernel (Column 2), optimal minimal stan-
dard error (MSE) bandwidth, and a set of city-level control variables. The optimal MSE bandwidths are chosen
separately for each side of the RD cutoff and in each regression. Robust standard errors clustered at the city level
are reported in parentheses. *10% significance level; **5% significance level; ***1% significance level.
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TABLE 3 IV Estimated Marginal Effect of PM2.5 on Multimorbidity,
Disability, and YLD

(1) (2) (3) (4)
Panel A: Marginal effects on multimorbidity

Outcomes: Multimorbidity (≥ 2 conditions) Multimorbidity (≥ 3 conditions)

PM2.5 (10 µg/m3) 0.052*** 0.051*** 0.017* 0.018*
(0.017) (0.016) (0.010) (0.010)

Bandwidth (North) 2.201 2.496 2.236 2.556
Bandwidth (South) 2.410 2.387 4.049 3.775

Panel B: Marginal effects on disability

Outcomes: Katz Index Barthel Index

PM2.5 (10 µg/m3) -0.036** -0.039** -0.015* -0.016*
(0.017) (0.016) (0.009) (0.009)

Bandwidth (North) 2.133 2.604 1.896 2.146
Bandwidth (South) 3.394 3.281 2.943 3.095

Panel C: Marginal effects on quality of life

Outcomes: YLD

PM2.5 (10 µg/m3) 21.393** 26.039***
(8.674) (8.828)

Bandwidth (North) 1.991 2.249
Bandwidth (South) 3.532 2.928

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth selection MSE MSE MSE MSE
Kernel Function Epa Tri Epa Tri

Notes: This table reports the estimated marginal effect of ten-unit increase (10 µg/m3) in long-term PM2.5 con-
centrations on population health outcomes. The estimation sample includes 121 cities located within 16 latitudes
along the Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and
that on health outcomes are from CHARLS 2011 survey. We estimate the impact of PM2.5 on the listed health
outcomes using local linear regression, treating distance from the Qinling-Huaihe line as the forcing variable and
PM2.5 as the treatment variable, with the Qinling-Huaihe line representing a “fuzzy” discontinuity in the level of
long-term PM2.5 exposure. We also adopt local linear distance function, epanechnikov kernel (Columns 1 and 3)
or triangular kernel (Columns 2 and 4), optimal minimal standard error (MSE) bandwidth, and control for a set of
city-level variables in regression analysis. The optimal MSE bandwidths are chosen separately for each side of the
RD cutoff and in each regression. Robust standard errors clustered at the city level are reported in parentheses.
*10% significance level; **5% significance level; ***1% significance level.
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TABLE 4 RD Estimated North-south Gap in Health Outcomes across
Different Socioeconomic Groups

Socioeconomic Group Education Attainment Income level

Low High Low High

Panel A: Multimorbidity

Multimorbidity (≥ 2 conditions) 0.132*** 0.101*** 0.183*** 0.073*
(0.047) (0.030) (0.027) (0.039)

Bandwidth (North) 2.020 2.302 2.208 2.465
Bandwidth (South) 2.623 3.196 2.062 2.033

Multimorbidity (≥ 3 conditions) 0.094*** 0.029 0.067** 0.044
(0.030) (0.025) (0.030) (0.033)

Bandwidth (North) 2.162 2.125 2.021 1.948
Bandwidth (South) 2.493 2.826 2.041 2.489

Panel B: Disability

Katz index -0.194*** -0.119*** -0.389*** -0.128**
(0.055) (0.043) (0.081) (0.052)

Bandwidth (North) 3.474 4.334 4.546 3.288
Bandwidth (South) 2.812 2.662 1.735 2.361

Barthel index -0.108*** -0.079*** -0.143*** -0.063**
(0.035) (0.020) (0.020) (0.026)

Bandwidth (North) 2.173 4.519 3.676 3.290
Bandwidth (South) 2.217 1.720 2.245 2.315

Panel C: Quality of life

YLD (per 103 people per year) 122.050*** 48.174*** 101.045*** 46.169*
(22.697) (16.209) (18.164) (23.662)

Bandwidth (North) 1.500 2.658 1.866 2.822
Bandwidth (South) 2.394 2.820 2.196 2.311

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth Selection MSE MSE MSE MSE
Kernel Function Epa Epa Epa Epa

Notes: This table reports the estimated north-south gap in population health outcomes across different socioe-
conomic groups. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe
line. Data on health outcomes are from CHARLS 2011 survey. The table reports RD estimated coefficients from
Equations 2 based on local linear distance function, epanechnikov kernel, optimal minimal standard error (MSE)
bandwidth, and a set of city-level control variables. The optimal MSE bandwidths are chosen separately for each
side of the RD cutoff and in each regression. Robust standard errors clustered at the city level are reported in
parentheses. *10% significance level; **5% significance level; ***1% significance level.
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TABLE 5 RD Estimated North-south Gap in Life-style Adjustments across
Different Socioeconomic Groups

Socioeconomic Group Educational background Income level

Low High Low High

Frequency of exercise (hrs/week) 8.373*** 13.664* 9.399 12.648*
(3.171) (7.714) (7.071) (6.926)

Bandwidth (North) 2.445 3.428 2.903 3.300
Bandwidth (South) 2.642 2.418 2.488 2.206

Years of alcohol drinking -1.227 -4.864* -3.374 -6.722*
(2.464) (2.775) (2.299) (4.043)

Bandwidth (North) 2.415 2.921 2.386 2.833
Bandwidth (South) 2.159 2.177 2.626 2.075

Years of smoking -2.177 -5.179*** -2.053* -6.571*
(1.846) (1.376) (1.186) (3.492)

Bandwidth (North) 2.847 2.832 4.602 2.593
Bandwidth (South) 2.501 2.455 2.061 2.427

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth Selection MSE MSE MSE MSE
Kernel Function Epa Epa Epa Epa

Notes: This table reports the estimated north-south gap in life-style Adjustments across different so-
cioeconomic groups. The estimation sample includes 121 cities located within 16 latitudes along the
Qinling-Huaihe line. Data on life-style are from CHARLS 2011 survey. The table reports RD esti-
mated coefficients from Equations 2 based on local linear distance function, epanechnikov kernel, optimal
minimal standard error (MSE) bandwidth, and a set of city-level control variables. The optimal MSE
bandwidths are chosen separately for each side of the RD cutoff and in each regression. Robust standard
errors clustered at the city level are reported in parentheses. *10% significance level; **5% significance
level; ***1% significance level.
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Appendices
(For Online Publication Only)

This appendix contains online supplementary material. In this appendix, we collect the
analyses, discussions, figures, and tables omitted from the main text.

Appendix A Policy and Geographical Contexts for the Em-
pirical Strategy

A.1 China’s Winter Heating Policy and the Choice of Pollutants

China’s winter heating policy began in the 1950s. The Soviet Union was the country
with the largest central heating scale in the world at that time. China followed the Soviet
model and initially established a residential boiler heating system. Based on geography,
climate, budget, energy shortage, and some social factors, the central government roughly
divides China into the south and the north with the Qinling-Huaihe line as the boundary,
and only provide district heating for northern cities in winter. But it wasn’t until the
1980s that district heating became widespread in northern China. During the period from
November 15th to March 15th of the following year, most cities in northern China can
enjoy free or highly subsidized heating. For some northern cities with very cold winters
(such as Harbin in Heilongjiang), the heating season will be extended to more than 6
months, from October of this year to April of the following year (Fan et al., 2020).

At that time, the main fuel used in China’s wintering heating system was coal, which
was utilized very inefficiently. The incomplete combustion of coal will produce a large
amount of air pollution, such as particulate matter (especially PM2.5) and sulfur dioxide
(SO2) (Almond et al., 2009; Muller et al., 2011). Therefore, whenever winter comes
and the central heating system starts to work, air pollution levels in northern Chinese
cities will increase rapidly, much higher than in southern cities during the same period.
This provides a quasi-experimental setting for us to use the discontinuity in air pollution
induced by China’s winter heating policy to estimate the health effects of long-term air
pollution exposure.

We chose PM2.5 as an air pollution indicator for the following two reasons. First, as
early as 1998, under the background of serious environmental pollution, the Chinese gov-
ernment proposed the ”two-control zone policy”. That is, according to natural conditions
such as meteorology, topography, soil, etc., the areas where acid rain had occurred or
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may occur or areas with severe sulfur dioxide pollution would be designated as acid rain
control areas or sulfur dioxide pollution control areas, which would be heavily regulated to
reduce pollution levels. Ebenstein et al. (2017) shows that China’s winter heating policy
does not cause a significant difference in the concentration of sulfur dioxide and nitrogen
oxide (NOx) between the north and the south. In contrast, the Chinese government first
proposed to control PM2.5 pollution in 2013, and our calculations show that the annual
average PM2.5 concentration from 1980 to 2010 does have a significant discontinuous rise
at the cutoff. Second, extensive researches clearly point to the health effects of rising
PM2.5 concentrations (Lu et al., 2015; Song et al., 2017; Bu et al., 2021). And Although
control of PM2.5 pollution is already underway in current China, we find the PM2.5 con-
centration is much higher that the recommended level (Pai et al., 2022), indicating that
PM2.5 pollution is still an important threat to residents’ health that cannot be ignored
(Yin et al., 2020).

A.2 The Qinglin-Huaihe line

The Qinglin-Huaihe line is located at about 32 to 35-degree north latitude, which ba-
sically coincides with the 800 mm annual precipitation line and the 0 degree centigrade
isotherm in January 1. It is also the dividing line between the subtropical monsoon cli-
mate and the temperate monsoon climate. There are significant geographic differences in
the northern and southern regions of China. A large number of studies have shown that
weather factors such as temperature, precipitation, and sunshine are related to the preva-
lence of chronic conditions and the resulting mortality (e.g., Braga et al. (2002); Goggins
and Chan (2017); Schinasi et al. (2020); Weller (2020); Liu et al. (2021)). Therefore, in
order to ensure the validity of our RD design and obtain more accurate result, we must
take these meteorological conditions into consideration.

Appendix B Variable Construction and Description

B.1 Sample Restriction

The baseline sample contains 17,708 respondents from 125 prefecture-level cities in
28 provinces. We aggregate individual-level data to the city level and calculate the
population-weighted, average prevalence rate of multimorbidity and other health out-

1. The 800 mm isotherm is the demarcation index between humid and semi-humid areas, and the meaning
of the zero-degree isotherm determines whether the river freezes in winter, that is, whether the average
temperature is above zero.
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comes. We match the city-average PM2.5 levels and other pollution measures to the
CHARLS cities, and obtain a set of relevant city-level demographic and socioeconomic
variables such as age structure, GDP per capita, and industrial structure from various
city statistical yearbooks. We drop 3 cities with missing values on PM2.5 levels or key
covariates (mostly minority autonomous regions). We also drop Shanghai, which has
the highest GDP per capita during the sample period, respectively, to avoid unobserved
socioeconomic factors from confounding our analysis. Finally, we obtain an analytical
sample of 121 cities.

B.2 Chronic Conditions

We use the data on the prevalence chronic conditions from the China Health and
Retirement Longitudinal Study (CHARLS). CHARLS is hosted by the National Develop-
ment Institute of Peking University and implemented by the China Social Science Survey
Center. CHARLS selects a total of 125 prefecture-level cities for the survey, and its ques-
tionnaires cover basic personal information, family structure and financial support, health
status, anthropocentric measurements, medical service utilization and medical insurance,
work, retirement and pensions, income, consumption, assets, and the basic situation of
the community, etc. The data quality of this survey is particularly high and has been
widely used and recognized in academic world.

A total of 14 categories of chronic conditions are considered in the CHARLS question-
naire. Since this paper does not investigate the impact of air pollution on mental and
memory diseases, there is no literature showing that air pollution has direct influence on
arthritis or rheumatism, and limited data for the prevalence of cancer and stroke, this pa-
per only examine how long-term exposure to PM2.5 affect the multimorbidity composed of
9 categories of chronic conditions, including hypertension, diabetes, dyslipidemia, asthma,
heart diseases, lung diseases, kidney diseases, liver diseases and stomach diseases. Since
several types of these conditions encompass a wide variety of specific diseases, we do not
use disease-specific terminology in this paper. A detailed description of these conditions
is given in Table B1.

B.3 Calculation of average PM2.5 concentration

Our measure is based on a database constructed by Zhong et al. (2022). The his-
torical PM2.5 concentrations are constructed at a 0.25◦ × 0.25◦ longitude-latitude grid
every 6 hours. The authors adopt a Light Gradient Boosting Machine (LightGBM) model
and combine long-term visibility from satellite images, conventional meteorological obser-
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vations, ground monitored pollution emissions, and elevation. This is the first historical
database of PM2.5 at such long time horizon, high temporal resolution, and fine geographic
resolution. We verify in Appendix Table A1 that the annual PM2.5 levels constructed from
Zhong et al. (2022) have strong correlations and good accuracy with ground-monitor-based
records after 2014, when the latter became available after the nationwide construction of
modern air pollution ground monitoring stations.

B.4 Meteorological Conditions and Socioeconomic Covariates

In order to verify the validity of our empirical strategy and adjust the estimates for
potential confounders, we collect annual climate panel data and socioeconomic character-
istics at the city level from the Chinese daily surface meteorological data set (V3.0) of
the National Meteorological Science Data Center and China Urban Statistical Yearbook
respectively. The data for the meteorological conditions are their annual means from 1980
to 2010, while the data on socioeconomic factors are their annual means from 1990 to
2011. Table B6 gives their summary statistics.

B.5 Other Health-related Variables

Demographic variables, including share of married population, age structure of sampled
population, share of sampled population with at least 6 years of education and share of
males of targeted population are all collected from CHARLS 2011 survey.

Meanwhile, we construct several channel variables based on individual’s health-related
behaviors. In terms of physical exercises, CHARLS survey in 2011 gathered data for
individuals’ frequency of three types of physical activities, including vigorous activities,
moderate-intensity activities, and walking. Interviewers would asked respondents how
many days each week they participated in these activities, and the day should be counted
only if the aggregate time for certain type of activities in that day is at least 10 minutes.
Meanwhile, interviewers count whether the respondents participate in such activities per
day for less than 30 minutes, or greater than or equal to 30 minutes and less than two
hours, or greater than or equal to two hours and less than 4 hours, or greater than or
equal to 4 hours. In order to obtain the total time of each type of exercise per week for
each respondent, we set the longest time for each type of activities per day as 4 hours, and
take the midpoint value of each time interval as the representative time for activities per
day. For example, when the respondents done certain type of activities for more than or
equal to 30 minutes and less than two hours, we considered their representative exercise
time to be 1.25 hours. Further the average time for physical exercises at the city level
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could be calculated.
For the two behaviors of smoking and drinking, CHARLS collected the age at which

the respondents started smoking and alcohol drinking, and the age when they quit smoking
and drinking, respectively. Based on it, we obtain the number of years of smoking and
alcohol drinking of the respondents, and calculate the mean at the city level like before.

With regard to sleeping, CHARLS survey counted the time each respondent actually
fell asleep during the night, and we calculate the city-level average actual sleeping time
from that. Finally, since the CHARLS questionnaire only counts the number of meals
the respondents ate per day which could measure the intakes of various nutrients well, we
use another nationally representative survey data, the China Health and Nutrition Survey
(CHNS), to construct the nutrient intakes variables. The China Health and Nutrition
Survey (CHNS) is an ongoing open-cohort international collaborative project between the
Carolina Population Center at the University of North Carolina at Chapel Hill and the
National Institute for Nutrition and Health (NINH) of the Chinese Center for Disease
Control and Prevention (CCDC), which was designed to examine the effects of the health,
nutrition, and family planning policies and programs implemented by national and local
governments, and to see how the social and economic transformation of Chinese society
affects the health and nutritional status of its population. Its rigorous sampling method
and questionnaire design ensure the reliability of data quality. CHNS counted the 3-day
average intakes of 4 types of nutrients in total, including carbohydrates, fats, proteins and
calories. We use the data from CHNS 2011 survey. The construction of variables is the
same as that described above.

B.6 Performance of Activities of Daily Living (ADLs)

In order to estimate the effect of long-term PM2.5 exposure on onset of disability, we
construct two types of indicators to measure the degree of disability in an individual. We
measure an individual’s degree of disability from the perspective of daily living behaviors.
Disability is commonly defined as a difficulty in performing activities necessary for inde-
pendent living, such as basic activities of daily living (ADLs) and complex instrumental
activities of daily living (IADLs) (Tas et al., 2007; Ćwirlej-Sozańska et al., 2019). The
concept of ADLs, which was originally proposed in the 1950s by Sidney Katz and his team
at the Benjamin Rose Hospital in Cleveland, Ohio, includes the daily activities we per-
form for self-care, like feeding oneself, bathing, dressing, grooming, cleaning oneself after
defecating, and has so far been developed and refined by many researchers (Noelker and
Browdie, 2014). Researchers have proposed a variety of scales to measure a person’s abil-
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ity to perform ADLs such as the Katz scale and Barthel scale.The CHARLS investigated
relative questions raised by these scales so that we could calculated the Katz index and
the Barthel index. The lower these two indices, the lower the individual’s ability to live
independently, that is, the higher the degree of disability. The Barthel index is usually
measured as a score out of 100. In order to make it comparable to the Katz index, we
divide it by 100 to normalize it to a ratio between 0 and 1. The details of the questions,
answers and evaluation methods proposed by CHARLS and these two scales are presented
in Table B2, Table B3 and Table B4 2.

B.7 Construction of YLD

Constructing Years Lived with Disability (YLD) involves several steps to quantify
the burden of specific health conditions on the population. YLD is a measure used in
the Global Burden of Disease (GBD) study to estimate the impact of non-fatal health
outcomes. We construct YLD in a given city in four steps:

First, we identify the nine most common chronic conditions. These conditions include
hypertension, dyslipidemia, diabetes, asthma, COPD, other chronic respiratory diseases,
cardiovascular diseases, liver diseases, and kidney diseases. Cancer and stroke is not
included in our analysis due to its extremely low self-reported incidence in our sample (we
observe zero cancer and stroke case in 60 and 63 out of 121 cities in our baseline sample).
Specifically, the prevalence of a given condition is calculated as the number of individuals
affected by the condition divided by the total sample size of each city.

Second, disability weights are assigned to each health condition to capture the impact
on individuals’ functioning and quality of life. We obtain the disability weight for each
chronic condition from the WHO global burden of disease study (Salomon et al., 2015).
These weights range from 0 to 1, with 0 representing perfect health and 1 indicating a
health state equivalent to death. Disability weights are generally derived through various
methods such as population surveys, expert consensus, or disability-adjusted life year
(DALY) valuation exercises. Since several types of these conditions encompass a wide
variety of specific diseases, we calculate the average disability weights of specific diseases
for these chronic conditions. We use the disability weight for hypertensive heart disease
as hypertension’s disability weight. And we set the disability weight for dyslipidemia to
zero because it is treated as a type of risk factor instead of chronic disease. The disability
weights for all chronic conditions are presented in Table B5.

2. Due to data limitations, we group whether the individual could dress and groom herself independently
into one question
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Third, we get YLD of each health condition by multiplying its prevalence with the cor-
responding disability weight. This accounts for the varying severity of different conditions
and their impact on overall disability burden.

Finally, total burden of non-fatal health outcomes in the population is computed by
aggregating the YLD of each health condition with comorbidity adjustment (WHO, 2020).
This calculation yields the number of healthy years lost due to living with these chronic
conditions.

It’s important to note that constructing YLD involves several data limitations. The
accuracy of the estimates depends on the quality and availability of data on prevalence
for each chronic conditions as reported in CHARLS survey. We expect that our estimated
YLD serves as a lower bound because of potential underreporting of disease incidences
in CHARLS survey. For example, the self-reported incidence of cancer and stroke is
extremely low in our sample.

Overall, YLD is a valuable metric for understanding the non-fatal burden of disease,
complementing measures such as Years of Life Lost (YLL) that focus on premature mor-
tality. It provides insights into the impact of health conditions on individuals’ well-being,
productivity, and overall quality of life. These estimates are crucial for informing pub-
lic health policies, resource allocation, and healthcare planning to address the burden of
disease and promote population health.

Appendix C Robustness Checks

C.1 Validating the RD design

We first assess the validity of applying the Qinling-Huaihe line as a geographic reference
line in our RD analysis, as well as the RD assumption that all demographic and economic
characteristics are smooth over distance to this reference line.

Figure 1, Panel (A) maps out the city-level implementation of winter heating policy
and highlights the Qinling-Huaihe line as a policy boundary for the winter heating policy,
with only a small number of cities did not exactly conform to the north-only rule. In the
RD analysis, we follow the standard practice of Ito and Zhang (2020) and use the difference
in latitude of cities relative to the Qinling-Huaihe line as the running variable. Specifically,
due to the variation of latitude range covered by the Qinling-Huaihe line in different areas,
we divide the river line into three segments, and in each segments, we measure a city’s
relative latitude to the middle point of the line’s latitude range. Hence, we could control
the regional fixed effect to avoid the endogeneity problem bias our estimates.
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We adopt a falsification RD specification based on placebo reference line to assess the
validity of this reference line. We verify that PM2.5 only changed discontinuously at the
true reference line rather than any other placebo references. Results from these tests are
presented in Figure A4.

Next, we test the smoothness of critical health-related factors over distance to this
reference line. First, Figure A2 and Table B9 shows that nutrition intakes did not show any
discontinuity change between the north and south. Then, Figure A5 and Table B10 show
that city-level socioeconomic development, demographic characteristics and meteorological
conditions are all similar on both sides of the reference line. In particular, population
of cities on both sides of the line had similar demographic structure and faced similar
economic circumstances and weather conditions. Finally, water pollution emissions from
industrial activities did not exhibit any sharp difference between the north and south.
Moreover, Ebenstein et al. (2017) found that the sulphur dioxide and nitrogen oxide
concentration were also similar between north and south of the line. This helps rule out
the possibility that the discontinuously higher level of air pollution in the north is driven
by north-south differences in economic activities or other pollutant emissions.

Overall, we find that residents living in the north and south of the line had similar
pattern of nutrition intakes, demographic structure, faced similar weather conditions and
socioeconomic circumstances, but experienced a sharply higher level of PM2.5 concentra-
tion.

C.2 Endogenous Sorting Around the Cutoff

The identification of Sharp RD relies on the fact that the treatment is completely
determined by the running variable and cannot be manipulated (Lee and Lemieux, 2010).
The running variable in our setting is the latitude of the city and residents of cities north
of the cutoff may choose to migrate to southern cities to avoid the health hazards of air
pollution. On the one hand, We believe that people will only choose to move in cities
with lower levels of air pollution. If this happens, the negative impacts of air pollution
on chronic conditions we estimate are actually a lower bound on the true results, which
does not affect our main conclusions. Meanwhile, Ding et al. (2021) points out that the
mobility of the sampled population of CHARLS is low. On the other hand, we conduct
McCrary test (McCrary, 2008) and density test (Cattaneo et al., 2020, 2021) in Figure A3,
which indicates no jump in density of the running variable and demonstrate our argument
above.
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C.3 Sensitivity of Estimates to the bandwidth, Optimal Bandwidth Se-
lection and Order of Local Polynomial Regression

We test wider bandwidths to check the sensitivity of our results to different band-
widths in Figure A7. In Table B11 and Table B12 we use another optimal bandwidth
selection method, the CER-optimal bandwidth selection, for estimation. And the coef-
ficient estimates obtained by local quardratic polynomial regression are shown in Table
B13 and Table B14. Overall, it can be found that the results of the above tables are
basically consistent with the results in the text, indicating that our conclusions are im-
mune to bandwidth change, the optimal bandwidth selection method and the order of the
polynomial.

C.4 Bias-corrected RD Estimates with Robust Variance Estimator

Calonico et al. (2014) points out that when using non-parametric methods to estimate
RD design, several existing bandwidth selection methods usually lead to too small con-
fidence intervals for the coefficient estimates, thus overly rejecting the null hypothesis.
Based on this, they propose a bias-corrected estimator with a novel robust standard error
to correct the resulting estimation bias. We report the estimated coefficients and standard
errors using this method in Table B15 and Table B16, which are also consistent with that
in the text.
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Appendix D Figures

FIGURE A1
The annual trend of national PM2.5 concentration

Notes: The green line represents the trend of annual PM2.5 concentration levels from 1960 to 2020 from
(Zhong et al., 2022), while the black line represents the annual trend from 2014 to 2020 from ground-based
monitoring stations. The red line indicates 2013.
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(A) Calorie intake (kcal) (B) Carbohydrate intake (g)

(C) Fat intake (g) (D) Protein intake (g)

FIGURE A2
RD Estimates of North-South Gaps in Nutrition Intakes

Notes: This table reports the estimated north-south gap in nutrition intakes. The estimation sample
includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on socioeconomic
characteristics and industrial emissions are obtained from China Urban Statistical Yearbook. Data on
nutrition intakes are from CHNS 2011 survey. Each dot represents the coefficient from a separate RD
regression based on local linear distance function, epanechnikov kernel, optimal minimal standard error
(MSE) bandwidth and a set of city-level control variables. Each vertical line refers to confidence interval
(CI) of the RD estimates.
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(A) McCrary (2008)’s Density Test

(B) Cattaneo et al. (2020, 2021)’s Density Test

FIGURE A3

Notes: This figure plots the two density tests of latitudes of cities in CHARLS on both sides of the reference
line. Panel (A) depicts the McCrary (2008)’s density test of discontinuity and Panel (B) shows (Cattaneo
et al., 2020, 2021)’s density test. Both tests show there is no discontinuous change in density of the sample
observations across the cutoff.
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FIGURE A4
RD estimates of the change in PM2.5 concentration at different placebo

cutoffs

Notes: This figure plots the estimates of north-south gap in long-term PM2.5 concentrations across placebo
reference lines. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-
Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022). Each dot
represents the coefficient from a separate RD regression based on local linear distance function, epanech-
nikov kernel, optimal minimal standard error (MSE) bandwidth, and a set of city-level control variables.
The optimal MSE bandwidths are chosen separately for each side of the RD cutoff and in each regression.
Each vertical line refers to confidence interval (CI) of the RD estimates.
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(A) Share of urban pop (B) Share of male pop

(C) Share of married (D) Finished primary school

(E) Hospital beds per 103 people (F) Education expenditure per person
(yuan)

FIGURE A5
RD Estimates of North-South Gaps in Socioeconomic Factors

Notes: This table reports the estimated north-south gap in Socioeconomic factors. The estimation sam-
ple includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on socioeconomic
characteristics and industrial emissions are obtained from China Urban Statistical Yearbook. Data on de-
mographic characteristics are from CHARLS 2011 survey. Data on meteorological characteristics are from
the Chinese daily surface meteorological dataset (V3.0) provided by the National Meteorological Science
Data Center. Both of socioeconomic characteristics and industrial emissions are annual average from 1990
to 2011, while the meteorological variables are annual average from 1980 to 2010. Each dot represents
the coefficient from a separate RD regression based on local linear distance function, epanechnikov kernel,
optimal minimal standard error (MSE) bandwidth and a set of city-level control variables. Each vertical
line refers to confidence interval (CI) of the RD estimates.
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(A) Temperature (degrees Celsius) (B) Sunlight (103 hours)

(C) Precipitation (103 mm) (D) Water pollution (106 ton)

FIGURE A6
RD Estimates of North-South Gaps in Meteorological Factors and Water

Pollution

Notes: This table reports the estimated north-south gap in meteorological factors and water pollution.
The estimation sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data
on nutrition intakes are from CHNS 2011 survey. Data on industrial emissions are obtained from China
Urban Statistical Yearbook. Data on meteorological characteristics are from the Chinese daily surface
meteorological dataset (V3.0) provided by the National Meteorological Science Data Center. Data on
water pollution are annual average from 1990 to 2011, while the meteorological variables are annual average
from 1980 to 2010. Each dot represents the coefficient from a separate RD regression based on local linear
distance function, epanechnikov kernel, optimal minimal standard error (MSE) bandwidth and a set of
city-level control variables. Each vertical line refers to confidence interval (CI) of the RD estimates.
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(A) PM25 (B) Multimorbidity (≥ 2 conditions) (C) Multimorbidity (≥ 3 conditions)

(D) Katz index (E) Barthel index (F) Years lived with disability (YLD)

FIGURE A7
Robustness Tests on Alternative Bandwidths

Notes: This table reports the estimated north-south gap in long-term PM2.5 concentrations and population health outcomes using different multiples
of the MSE-optimal bandwidth. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on long-term
PM2.5 concentrations are obtained from Zhong et al. (2022) and data on health outcomes are from CHARLS 2011 survey. Each dot represents the
coefficient from a separate RD regression based on local linear distance function, epanechnikov kernel and and a set of city-level control variables. Each
vertical line refers to confidence interval (CI) of the RD estimates.
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Appendix E Tables

TABLE B1 The profile of chronic conditions in CHARLS

Chronic condition Subcategory of specific diseases

Hypertension Hypertension

Dyslipidemia Elevation of low density lipoprotein, triglycerides (TGs),and total cholesterol, or

a low high density lipoprotein level

Diabetes Diabetes or high blood sugar

Asthma Asthma

Lung diseases Chronic lung diseases, such as chronic bronchitis (excluding asthma, tumor or

cancer)

Liver diseases Hepatic diseases (except fatty liver, tumors, and cancer)

Heart diseases Heart attack, coronary heart disease, angina, congestive heart failure, or other

heart problems

Kidney diseases Chronic nephropathy (except for tumor or cancer)

Stomach diseases Gastropathy (except for tumor or cancer)

17



TABLE B2 Questions on Activities of Daily Living (ADL) in CHARLS

Number Questions

1 Do you have any difficulty with running or jogging about 1 kilometer?
2 Do you have any difficulty with walking about 1 kilometer?
3 Do you have any difficulty with walking about 100 meters?
4 Do you have difficulty with climbing several flights of stairs without resting?
5 Because of health and memory problems, do you have any difficulty with bathing or

showering?
6 Because of health and memory problems, do you have any difficulty with dressing?

Dressing includes taking clothes out from a closet, putting them on, buttoning up, and
fastening a belt.

7 Because of health and memory problems, do you have any difficulties with using the toilet,
including getting up and down?

8 Do you have any difficulty with getting into or out of bed?
9 Because of health and memory problems, do you have any difficulties with controlling

urination and defecation? If you use a catheter (conduit) or a pouch by yourself, then you
are not considered to have difficulties.

10 Because of health and memory problems, do you have any difficulty with eating, such as
cutting up your food?

Answers

A No, I do not have any difficulty.
B I have difficulty but can still do it.
C Yes, I have difficulty and need help.
D I can not do it.
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TABLE B3 Scale of Katz index

Katz index activity Independent Partially
dependent

Fully dependent

Bathing (sponge, shower, or bathtub) Receives no
assistance

Receives assistance
in bathing only one

Receives assistance
in bathing more

part of the body
(such as back or a

leg)

than one part of
the body (or no

bathed)

Dressing (gets clothes from closets Receives no
assistance

Receives assistance
only in tying shoes

Receives assistance
in getting clothes

and drawers and gets dressed) or in getting
dressed, or stays

partly
or completely
undressed

Going to toilet (for bowel and urine Receives no
assistance

Receives assistance
in going to ”toilet

room”

Does not go to the
room termed

“toilet”
elimination; cleaning self after or in cleaning self

or in arranging
clothes

for the elimination
process

elimination, and arranging clothes)

Transfer (moves in and out of bed or chair) Receives no
assistance

Moves in and out
of bed or chair
with assistance

Does not get out of
bed

Continence (physiological process of Controls urination
and bowel

Has occasional
”accidents”

Supervision helps
keep urine or bowel

elimination from bladder and bowel) movement
completely by self

control; catheter is
used or is

incontinence

Feeding (process of getting food from Receives no
assistance

Feeds self except
for getting
assistance

Receives assistance
in feeding or is fed

a plate or equivalent into the mouth) in cutting meat or
buttering bread

partly or
completely by
using tubes or

intravenous fluids

Scoring and definitions

A. Independent in feeding, continence, transferring, going to toilet, dressing, and bathing.
B. Independent in all but one of these functions.
C. Independent in all but bathing, and one additional function.
D. Independent in all but bathing, dressing, and one additional function.
E. Independent in all but bathing, dressing, going to toilet, and one additional function.
F. Independent in all but bathing, dressing, going to toilet, transferring, and one additionalfunction.
G. Dependent in all six functions
Other: dependent in At least two functions, but not classifiable as C, D, E, or F.
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TABLE B4 Scale of Barthel index

Barthel Index Activity Score

Feeding 0 = unable
5 = needs help cutting, spreading butter, etc., or requires modified diet
10 = independent

Bathing 0 = dependent
5 = independent (or in shower)

Grooming 0 = needs to help with personal care
5 = in dependent face/hair/teeth/shaving (implements provided)

Dressing 0 = dependent
5 = needs help but can do about half unaided
10 = in dependent (in eluding buttons, zips, laces, etc.)

Bowels 0 = incontinent (or needs to be given enemas)
5 = occasional accident
10 = continent

Bladder 0 = incontinent, or catheterized and unable to manage alone
5 = occasional accident
10 = continent

Toilet Use 0 = dependent
5 = needs some help, but can do something alone
10 = independent (on and off, dressing, wiping)

Transfers (Bed-Chair) 0 = unable, no sitting balance
5 = major help (one or two people, physical), can sit
10 = minor help (verbal or physical) 15 = independent

Mobility (on Level Surfaces) 0 = immobile or <50 yards
5 = wheelchair independent, including corners, >50 yards
10 = walks with help of one person (verbal or physical) >50 yards
15 = independent (but may use any aid; for example, stick) >50 yards

Stairs 0 = unable
5 = needs help (verbal, physical, carrying aid)
10 = independent
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TABLE B5 The disability weights of chronic conditions in CHARLS

Name of chronic conditions Dsiability weight

Hypertension 0.072
Dyslipidemia 0
Diabetes 0.148
Asthma 0.061
Lung diseases 0.344
Liver diseases 0.220
Heart diseases 0.112
Kidney diseases 0.347
Stomach diseases 0.172

Notes: This table reports the disability weights for all chronic conditions reported by the CHARLS sur-
vey. The original disability weight for each health condition is obtained from the WHO global burden of
disease study (Salomon et al., 2015).
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TABLE B6 Summary Statistics of Covariates

(1) (2) (3)
Dependent variables North South Raw Diff (1)-(2)

Economic Conditions

GDP per capita (103 yuan, 1990 RMB) 7.192 (4.309) 7.141 (6.870) 0.051 (1.058)

Share of value added of primary industry 0.203 (0.097) 0.216 (0.092) -0.013 (0.017)

Share of value added of secondary industry 0.447 (0.097) 0.433 (0.077) 0.014 (0.016)

Demographics

Share of non-farm population 0.323 (0.144) 0.262 (0.134) 0.061 (0.025)

Average years of education 9.094 (0.849) 8.659 (0.905) 0.435 (0.160)

Weather Conditions

Perticipation (103 mm) 0.597 (0.181) 1.374 (0.313) -0.777 (0.047)

Sunlight (103 hour) 2.402 (0.303) 1.677 (0.336) 0.725 (0.058)

Temperature (degrees Celsius) 10.329 (3.823) 17.625 (2.351) -7.297 (0.570)

Other Polluting Activities

Water pollution (106 ton) 71.958 (64.716) 90.593 (157.929) -18.635 (22.435)

Observations 57 64 121
Notes: This table presents the average values of relevant control variables in the north and south of the reference
line. The estimation sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line, of which
57 are in the north and 64 are in the south. Data on socioeconomic characteristics are obtained from China Urban
Statistical Yearbook. Data on meteorological characteristics are from the Chinese daily surface meteorological
dataset (V3.0) provided by the National Meteorological Science Data Center. The socioeconomic variables are
all annual average from 1990 to 2011, while the meteorological variables are annual average from 1980 to 2010.
Standard deviations are reported in parentheses.
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TABLE B7 RD Estimated North-south Gap in each chronic condition

Chronic Disease (1) (2) Chronic Disease (3) (4)

Hypertension 0.022 0.017 Asthma 0.034** 0.027*
(0.028) (0.026) (0.017) (0.016)

Bandwidth (North) 3.811 4.669 Bandwidth (North) 4.034 4.341
Bandwidth (South) 3.005 2.917 Bandwidth (South) 2.459 3.336

Diabetes 0.024 0.039** Stomach diseases 0.205*** 0.177***
(0.017) (0.017) (0.041) (0.040)

Bandwidth (North) 2.622 3.705 Bandwidth (North) 2.269 2.679
Bandwidth (South) 1.756 1.796 Bandwidth (South) 2.162 2.300

Dyslipidemia 0.047 0.049* Liver diseases 0.026** 0.020**
(0.030) (0.028) (0.012) (0.010)

Bandwidth (North) 3.100 3.762 Bandwidth (North) 2.306 2.682
Bandwidth (South) 2.822 2.914 Bandwidth (South) 3.012 2.760

Heart diseases 0.016 0.013 Kidney diseases 0.066*** 0.068***
(0.016) (0.014) (0.023) (0.023)

Bandwidth (North) 1.984 2.617 Bandwidth (North) 2.035 2.227
Bandwidth (South) 2.973 2.960 Bandwidth (South) 2.318 2.391

Lung diseases 0.053*** 0.048***
(0.013) (0.011)

Bandwidth (North) 1.940 2.408
Bandwidth (South) 2.461 2.575

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth selection MSE MSE MSE MSE
Kernel Function Epa Tri Epa Tri

Notes: This table reports the estimated north-south gap in each chronic condition. The estimation sample
includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on chronic conditions
are from CHARLS 2011 survey. The table reports RD estimated coefficients from Equations 2 based on
local linear distance function, epanechnikov kernel (Column 1) or triangular kernel (Column 2), optimal
minimal standard error (MSE) bandwidth, and a set of city-level control variables. The optimal MSE
bandwidths are chosen separately for each side of the RD cutoff and in each regression. Robust standard
errors clustered at the city level are reported in parentheses. *10% significance level; **5% significance
level; ***1% significance level.
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TABLE B8 RD Estimated North-south Gap in Life-style Adjustments

Outcomes (1) (2)

Frequency of exercise (hrs/week) 9.740** 8.605**
(4.110) (3.719)

Bandwidth (North) 3.412 4.249
Bandwidth (South) 2.420 2.687

Years of alcohol drinking -4.548*** -4.709***
(1.674) (1.632)

Bandwidth (North) 2.393 4.170
Bandwidth (South) 2.534 2.678

Years of smoking -5.009*** -5.086***
(0.874) (0.845)

Bandwidth (North) 3.553 4.132
Bandwidth (South) 2.113 2.099
Observations 121 121
Longitude-region FEs Yes Yes
Control Variables Yes Yes
Bandwidth Selection MSE MSE
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in Life-style Adjustments. The estimation
sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on Life-style
Adjustments are from CHARLS 2011 survey. The table reports RD estimated coefficients from Equations
2 based on local linear distance function, epanechnikov kernel (Column 1) or triangular kernel (Column
2), optimal minimal standard error (MSE) bandwidth, and a set of city-level control variables. The opti-
mal MSE bandwidths are chosen separately for each side of the RD cutoff and in each regression. Robust
standard errors clustered at the city level are reported in parentheses. *10% significance level; **5%
significance level; ***1% significance level.
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TABLE B9 RD Estimated North-south Gap in nutrition intakes

Outcomes (1) (2)

Calorie (kcal, 3 days’s average) -357.908 -402.722
(258.029) (275.525)

Carbohydrate (g, 3 days’s average) -51.144 -59.599
(49.885) (53.534)

Fat (g, 3 days’s average) -9.708 -10.222
(7.289) (7.313)

Protein (g, 3 days’s average) -10.589 -10.877
(7.855) (8.262)

Bandwidth (North) 7.000 7.000
Bandwidth (South) 7.000 7.000
Observations 45 45
Longitude-region FEs Yes Yes
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in nutrition intakes. The estimation sample
includes 45 cities located within 13 latitudes along the Qinling-Huaihe line. Data on nutrition intakes
are from CHNS 2011 survey. The table reports RD estimated coefficients from Equations 2 based on
local linear distance function and epanechnikov kernel (Column 1) or triangular kernel (Column 2).The
bandwidths used in each regression are set to 7 to ensure there are enough observations to perform calcu-
lations. Robust standard errors clustered at the city level are reported in parentheses. *10% significance
level; **5% significance level; ***1% significance level.
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TABLE B10 RD Estimated North-south Gap in Socioeconomic and
Meteorological Factors

Outcomes (1) (2)

Panel A: Socioeconomic characteristics

Hospital beds per 103 people 0.104 0.144
(0.588) (0.560)

Bandwidth (North) 3.619 4.178
Bandwidth (South) 2.789 2.942
Education expenditure per person (yuan) -47.635 -48.194

(61.926) (60.998)
Bandwidth (North) 3.264 2.786
Bandwidth (South) 2.458 2.567
Share of non-farm population 0.024 0.018

(0.040) (0.039)
Bandwidth (North) 2.338 3.021
Bandwidth (South) 2.947 3.017
Share of male population 0.032 0.036

(0.023) (0.024)
Bandwidth (North) 3.100 3.862
Bandwidth (South) 2.764 2.888
Share finished primary school -0.220 -0.222

(0.177) (0.175)
Bandwidth (North) 2.431 2.652
Bandwidth (South) 1.922 2.081
Share of married population -0.009 -0.011

(0.018) (0.016)
Bandwidth (North) 2.194 2.845
Bandwidth (South) 2.204 2.303

Panel B: Meteorological conditions and water pollution

Temperature (degrees Celsius) -0.133 -0.061
(0.486) (0.458)

Bandwidth (North) 2.506 2.988
Bandwidth (South) 2.581 2.704
Sunlight (103 hours) -0.115 -0.133*

(0.079) (0.074)
Bandwidth (North) 2.978 3.745
Bandwidth (South) 2.330 2.520
Precipitation (103 mm) 0.034 0.030

(0.114) (0.113)
Bandwidth (North) 3.481 3.813
Bandwidth (South) 2.506 2.635
Water pollution (106 ton) -10.534 -13.263

(35.068) (33.845)
Bandwidth (North) 2.392 2.845
Bandwidth (South) 2.454 2.699
Observations 121 121

Notes: This table reports the estimated north-south gap in critical health-related factors. The estimation sample
includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on socioeconomic characteristics
and industrial emissions are obtained from China Urban Statistical Yearbook. Data on demographic characteristics
are from CHARLS 2011 survey. Data on meteorological characteristics are from the Chinese daily surface me-
teorological dataset (V3.0) provided by the National Meteorological Science Data Center. Both of socioeconomic
characteristics and industrial emissions are annual average from 1990 to 2011, while the meteorological variables
are annual average from 1980 to 2010. The table reports RD estimated coefficients from Equations 2 based on local
linear distance function, epanechnikov kernel (Column 1) or triangular kernel (Column 2) and optimal minimal
standard error (MSE) bandwidth. The optimal MSE bandwidths are chosen separately for each side of the RD
cutoff in each regression. Robust standard errors clustered at the city level are reported in parentheses. *10%
significance level; **5% significance level; ***1% significance level.
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TABLE B11 RD Estimated North-south Gap in PM2.5 Levels,
Multimorbidity, Disability, and YLD using the CER-optimal bandwidth

selection

Outcomes (1) (2)

Panel A: Long-term PM2.5 concentration (1980-2010)

PM25 (µg/m3) 25.336*** 25.956***
(6.341) (5.939)

Bandwidth (North) 1.684 1.894
Bandwidth (South) 1.988 1.973

Panel B: Multimorbidity

Multimorbidity ( ≥ 2 conditions) 0.134*** 0.135***
(0.023) (0.021)

Bandwidth (North) 2.015 2.618
Bandwidth (South) 2.583 2.529
Multimorbidity ( ≥ 3 conditions) 0.059** 0.057**

(0.026) (0.023)
Bandwidth (North) 2.082 3.256
Bandwidth (South) 2.478 2.342

Panel C: Disability

Katz index -0.121*** -0.125***
(0.031) (0.029)

Bandwidth (North) 3.248 3.868
Bandwidth (South) 1.815 1.770
Barthel index -0.078*** -0.076***

(0.014) (0.014)
Bandwidth (North) 3.287 3.532
Bandwidth (South) 1.893 1.822

Panel D: Quality of life

YLD (per 103 people per year) 84.866*** 81.361***
(18.308) (15.667)

Bandwidth (North) 1.638 1.783
Bandwidth (South) 2.191 2.181

Observations 121 121
Longitude-region FEs Yes Yes
Control Variables Yes Yes
Bandwidth Selector CERtwo CERtwo
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in long-term PM2.5 concentrations and popu-
lation health outcomes. The estimation sample includes 121 cities located within 16 latitudes along the
Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and
data on health outcomes are from CHARLS 2011 survey. The table reports RD estimated coefficients
from Equations 1 and 2 based on local linear distance function, epanechnikov kernel (Column 1) or tri-
angular kernel (Column 2), optimal coverage error rate (CER) bandwidth, and a set of city-level control
variables. The optimal CER bandwidths are chosen separately for each side of the RD cutoff and in each
regression. Robust standard errors clustered at the city level are reported in parentheses. *10% signifi-
cance level; **5% significance level; ***1% significance level.
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TABLE B12 IV Estimated Marginal Effect of PM2.5 on Multimorbidity,
Disability, and YLD using the CER-optimal bandwidth selection

(1) (2) (3) (4)
Panel A: Marginal effects on multimorbidity

Outcomes: Multimorbidity (≥ 2 conditions) Multimorbidity (≥ 3 conditions)

PM2.5 (µg/m3) 0.051** 0.051*** 0.019** 0.022**
(0.021) (0.019) (0.010) (0.009)

Bandwidth (North) 1.732 1.964 1.759 2.011
Bandwidth (South) 1.896 1.878 3.186 2.970

Panel B: Marginal effects on disability

Outcomes: Katz Index Barthel Index

PM2.5 (µg/m3) -0.047* -0.047** -0.021* -0.019**
(0.025) (0.019) (0.011) (0.009)

Bandwidth (North) 1.678 2.049 1.492 1.688
Bandwidth (South) 2.671 2.581 2.316 2.435

Panel C: Marginal effects on quality of life

Outcomes: YLD

PM2.5 (µg/m3) 31.526*** 30.449***
(10.300) (8.618)

Bandwidth (North) 1.567 1.770
Bandwidth (South) 2.779 2.303

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth selection CERtwo CERtwo CERtwo CERtwo
Kernel Function Epa Tri Epa Tri

Notes: This table reports the estimated marginal effect of ten-unit increase (µg/m3) in long-term PM2.5 concen-
trations on population health outcomes. The estimation sample includes 121 cities located within 16 latitudes
along the Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and
that on health outcomes are from CHARLS 2011 survey. We estimate the impact of PM2.5 on the listed health
outcomes using local linear regression, treating distance from the Qinling-Huaihe line as the forcing variable and
PM2.5 as the treatment variable, with the Qinling-Huaihe line representing a “fuzzy” discontinuity in the level
of long-term PM2.5 exposure. We also adopt local linear distance function, epanechnikov kernel (Columns 1 and
3) or triangular kernel (Columns 2 and 4), optimal coverage error rate (CER) bandwidth, and a set of city-level
control variables. The optimal CER bandwidths are chosen separately for each side of the RD cutoff and in each
regression. Robust standard errors clustered at the city level are reported in parentheses. *10% significance level;
**5% significance level; ***1% significance level.
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TABLE B13 RD Estimated North-south Gap in PM2.5 Levels,
Multimorbidity, Disability, and YLD using the local quardratic polynomial

regression

Outcomes (1) (2)

Panel A: Long-term PM2.5 concentration (1980-2010)

PM2.5 (µg/m3) 26.673*** 24.283***
(8.832) (8.601)

Bandwidth (North) 3.219 3.876
Bandwidth (South) 3.156 3.236

Panel B: Multimorbidity

Multimorbidity ( ≥ 2 conditions) 0.124*** 0.131***
(0.047) (0.043)

Bandwidth (North) 2.822 3.359
Bandwidth (South) 3.003 3.047
Multimorbidity ( ≥ 3 conditions) 0.074** 0.073**

(0.038) (0.034)
Bandwidth (North) 3.181 3.785
Bandwidth (South) 3.429 3.498

Panel C: Disability

Katz index -0.131*** -0.127***
(0.041) (0.037)

Bandwidth (North) 4.723 6.227
Bandwidth (South) 2.656 2.885
Barthel index -0.068*** -0.073***

(0.021) (0.023)
Bandwidth (North) 3.093 3.841
Bandwidth (South) 2.531 2.807

Panel D: Quality of life

YLD (per 103 person per year) 74.979** 74.566***
(30.855) (28.625)

Bandwidth (North) 2.903 3.600
Bandwidth (South) 3.553 3.666

Observations 121 121
Longitude-region FEs Yes Yes
Control Variables Yes Yes
Bandwidth Selector MSE MSE
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in long-term PM2.5 concentrations and popu-
lation health outcomes. The estimation sample includes 121 cities located within 16 latitudes along the
Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and
data on health outcomes are from CHARLS 2011 survey. The table reports RD estimated coefficients
from Equations 1 and 2 based on local quardratic distance function, epanechnikov kernel (Column 1) or
triangular kernel (Column 2), optimal minimal standard error (MSE) bandwidth, and a set of city-level
control variables. The optimal MSE bandwidths are chosen separately for each side of the RD cutoff and
in each regression. Robust standard errors clustered at the city level are reported in parentheses. *10%
significance level; **5% significance level; ***1% significance level.
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TABLE B14 IV Estimated Marginal Effect of PM2.5 on Multimorbidity,
Disability, and YLD using the local quardratic polynomial regression

(1) (2) (3) (4)
Panel A: Marginal effects on multimorbidity

Outcomes: Multimorbidity (≥ 2 conditions) Multimorbidity (≥ 3 conditions)

PM2.5 (µg/m3) 0.039* 0.054* 0.016 0.026
(0.024) (0.030) (0.012) (0.017)

Bandwidth (North) 2.901 3.620 3.644 4.022
Bandwidth (South) 3.982 3.509 4.853 4.040

Panel B: Marginal effects on disability

Outcomes: Katz Index Barthel Index

PM2.5 (µg/m3) -0.034 -0.048* -0.024 -0.018
(0.024) (0.028) (0.016) (0.011)

Bandwidth (North) 3.438 4.046 2.987 3.690
Bandwidth (South) 2.913 3.142 3.310 4.232

Panel C: Marginal effects on quality of life

Outcomes: YLD

PM2.5 (µg/m3) 28.058 28.348
(17.794) (17.440)

Bandwidth (North) 3.671 3.932
Bandwidth (South) 3.626 3.758

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth selection MSE MSE MSE MSE
Kernel Function Epa Tri Epa Tri

Notes: This table reports the estimated marginal effect of ten-unit increase (µg/m3) in long-term PM2.5 concen-
trations on population health outcomes. The estimation sample includes 121 cities located within 16 latitudes
along the Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained from Zhong et al. (2022) and
that on health outcomes are from CHARLS 2011 survey. We estimate the impact of PM2.5 on the listed health
outcomes using local linear regression, treating distance from the Qinling-Huaihe line as the forcing variable and
PM2.5 as the treatment variable, with the Qinling-Huaihe line representing a “fuzzy” discontinuity in the level of
long-term PM2.5 exposure. We also adopt local quardratic distance function, epanechnikov kernel (Columns 1 and
3) or triangular kernel (Columns 2 and 4), optimal minimal standard error (MSE) bandwidth, and control for a set
of city-level variables in regression analysis. The optimal MSE bandwidths are chosen separately for each side of
the RD cutoff and in each regression. Robust standard errors clustered at the city level are reported in parentheses.
*10% significance level; **5% significance level; ***1% significance level.
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TABLE B15 RD Estimated North-south Gap in PM2.5 Levels,
Multimorbidity, Disability, and YLD based on bias correction and robust

variance adjustment

Outcomes (1) (2)

Panel A: Long-term PM2.5 concentration (1980-2010)

PM2.5 (µg/m3) 25.596*** 26.368***
(6.907) (7.589)

Bandwidth (North) 3.985 3.676
Bandwidth (South) 4.021 4.135

Panel B: Multimorbidity

Multimorbidity ( ≥ 2 conditions) 0.127*** 0.129***
(0.033) (0.039)

Bandwidth (North) 6.231 4.382
Bandwidth (South) 5.505 5.975
Multimorbidity ( ≥ 3 conditions) 0.046* 0.061*

(0.026) (0.031)
Bandwidth (North) 7.162 4.499
Bandwidth (South) 4.787 5.008

Panel C: Disability

Katz index -0.162*** -0.170***
(0.038) (0.043)

Bandwidth (North) 7.540 6.959
Bandwidth (South) 3.377 3.322
Barthel index -0.095*** -0.096***

(0.017) (0.018)
Bandwidth (North) 6.108 6.518
Bandwidth (South) 3.854 3.974

Panel D: Quality of life

YLD (per 103 people per year) 95.287*** 98.264***
(21.283) (22.675)

Bandwidth (North) 3.674 3.459
Bandwidth (South) 4.813 5.019

Observations 121 121
Longitude-region FEs Yes Yes
Control Variables Yes Yes
Bandwidth selection MSE MSE
Kernel Function Epa Tri

Notes: This table reports the estimated north-south gap in long-term PM2.5 concentrations and population health
outcomes based on bias correction and robust variance adjustment. The estimation sample includes 121 cities
located within 16 latitudes along the Qinling-Huaihe line. Data on long-term PM2.5 concentrations are obtained
from Zhong et al. (2022) and data on health outcomes are from CHARLS 2011 survey. The table reports RD
estimated coefficients from Equations 1 and 2 based on local linear distance function, epanechnikov kernel (Col-
umn 1) or triangular kernel (Column 2), optimal minimal standard error (MSE) bandwidth, and a set of city-level
control variables. The optimal MSE bandwidths are chosen separately for each side of the RD cutoff and in each
regression. Robust standard errors clustered at the city level are reported in parentheses. *10% significance level;
**5% significance level; ***1% significance level.
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TABLE B16 IV Estimated Marginal Effect of PM2.5 on Multimorbidity,
Disability, and YLD based on bias correction and robust variance adjustment

(1) (2) (3) (4)
Panel A: Marginal effects on multimorbidity

Outcomes: Multimorbidity (≥ 2 conditions) Multimorbidity (≥ 3 conditions)

PM2.5 (µg/m3) 0.060*** 0.060*** 0.012 0.017
(0.022) (0.020) (0.013) (0.012)

Bandwidth (North) 3.418 3.612 3.310 3.682
Bandwidth (South) 4.007 3.982 6.434 5.879

Panel B: Marginal effects on disability

Outcomes: Katz Index Barthel Index

PM2.5 (µg/m3) -0.034 -0.038** -0.008 -0.011
(0.021) (0.019) (0.011) (0.011)

Bandwidth (North) 3.514 4.113 3.256 3.647
Bandwidth (South) 5.565 5.407 4.988 5.169

Panel C: Marginal effects on quality of life

Outcomes: YLD

PM2.5 (µg/m3) 20.762* 31.520***
(11.065) (11.196)

Bandwidth (North) 3.356 3.786
Bandwidth (South) 5.652 4.839

Observations 121 121 121 121
Longitude-region FEs Yes Yes Yes Yes
Control Variables Yes Yes Yes Yes
Bandwidth selection MSE MSE MSE MSE
Kernel Function Epa Tri Epa Tri

Notes: This table reports the estimated marginal effect of ten-unit increase (µg/m3) in long-term PM2.5 concen-
trations on population health outcomes based on bias correction and robust variance adjustment. The estimation
sample includes 121 cities located within 16 latitudes along the Qinling-Huaihe line. Data on long-term PM2.5
concentrations are obtained from Zhong et al. (2022) and that on health outcomes are from CHARLS 2011 survey.
We estimate the impact of PM2.5 on the listed health outcomes using local linear regression, treating distance from
the Qinling-Huaihe line as the forcing variable and PM2.5 as the treatment variable, with the Qinling-Huaihe line
representing a “fuzzy” discontinuity in the level of long-term PM2.5 exposure. We also adopt local linear distance
function epanechnikov kernel (Columns 1 and 3) or triangular kernel (Columns 2 and 4), optimal minimal standard
error (MSE) bandwidth, and control for a set of city-level variables in regression analysis. The optimal MSE band-
widths are chosen separately for each side of the RD cutoff and in each regression. Robust standard errors clustered
at the city level are reported in parentheses. *10% significance level; **5% significance level; ***1% significance level.
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